|
|
|
|
||
Case 1 |
Case
2 |
|
Inferiority
Theorem |
(z-1)·A=A |
0+A=A |
Superiority
Theorem |
0·A=0 |
(z-1)+A=(z-1) |
Distribution
Theorem |
A· (B+C)=(A·B)+(A·C) |
A+(B·C)=(A+B)·(A+C) |
Idempotence
Theorem |
A·A=A |
A+A=A |
Association
Theorem |
A·(B·C)=(A·B)·C
|
A+(B+C)=(A+B)+C |
Commutation
Theorem |
A·B=B·A
|
A+B=B+A |
Absorption
Theorem-I |
A·(A+B)=A |
A+(A·B)=A |
Image-Scaling
Theorem |
(A·B)¯=
A¯+ B¯ |
(A+B)¯= A¯· B¯ |
Uniform
Degeneracy |
Dual
·=+ |
Dual
+=· |
Exclusion
Theorem |
A·(C0(A)+B)=A·B |
A+(Jz-1(A)·B)=A+B |
Variable
Expansion |
m=z-1 |
m=z-1 |
Static
Theorem |
A·C0(A)=0
|
A+Jz-1(A)=z-1 |
The table listed below shows the derivations steps for the static, quasi-static, and variable expansion theorems.
Deriving Kleenean Algebra
As Defined By [12]
Table-5:
Derivation of Kleenean Algebra from AOP |
|||
Theorem
Name under AOP |
Case-1
|
Case-2 |
|
1 |
Inferiority
Theorem |
1·A=A |
0ÚA=A |
2 |
Superiority
Theorem |
0·A=0 |
1ÚA=1 |
3
|
Distribution
Theorem |
A·(BÚC)=(A·B) Ú(A·C) |
AÚ(B·C)=(AÚB)·(AÚC) |
4 |
Idempotence
Theorem |
A·A=A |
AÚA=A |
5 |
Association
Theorem |
A·(B·C)=(A·B)·C |
AÚ(BÚC)=(AÚB) ÚC |
6 |
Commutation
Theorem |
A·B=B·A |
AÚB=BÚA |
7 |
Absorption
Theorem-I |
A·(AÚB)=A |
AÚ(A·B)=A |
8 |
Absorption
Theorem-III |
(A¯·
A )·(B¯Ú
B)=(A¯·A)
|
(A¯·A
)Ú(B¯Ú
B) =( B¯Ú
B) |
9 |
Costar
Theorem |
A==A |
A==A |
10 |
Uniform Degeneracy |
Dual ·=Ú |
Dual Ú=· |
11 |
Image-Scaling Theorem |
(A·B)¯= A¯ Ú B¯ |
(AÚB)¯ = A¯ · B¯ |
Deriving
the Kleene's Laws from the Absorption Theorem III
The Kleene's laws are: (1) (A·A¯)·(BÚB¯)=
(A·A¯)
and (2) (A·A¯)Ú
(BÚB¯)=
(BÚB¯).
The '·'
operator in this law represents the MIN operator and 'Ú'
represents the MAX operator. The DnDel Ñ
prioritor in AOP corresponds to the MAX operator and the UpDel prioritor D
corresponds to the MIN operator.
Kleene's laws
are: (1) (A·A¯)·(BÚB¯)=
(A·A¯)
and (2) (A·A¯)Ú
(BÚB¯)=
(BÚB¯).
The '·'
operator in this law represents the MIN operator and 'Ú'
represents the MAX operator. The DnDel prioritor “Ñ”
in AOP corresponds to the MAX operator and the UpDel prioritor “D”
corresponds to the MIN operator.
|
|
(AaA¾ a#)a(Ba*B¾ a#)=(AaA¾ a#) |
Absorption
theorem-III |
(A·A¾ · #)·(B·*B¾ · #)=(A·A¾ · #) |
Letting a=· |
(A·A¾ · #)·(BÚB¾ · #)=(A·A¾ · #) |
Since ·=D, then ·*=D*=Ñ=Ú |
(A·A¾ D)·(BÚB¾ D)=(A·A¾ D) |
Since ·=D, then |
(A· A¯ )·(BÚ B¯)=(A·A¯) |
Since the bar '¯'
in Boolean, Post and Kleenean algebras corresponds to D
operator in AOP. Q.E.D. |
|
|
(AaA¾ a¾ )a(Ba*B¾ a#)=(AaA¾ a#) |
Absorption
theorem-III |
(AÚA¾Ú #)Ú (BÚ*B¾Ú #)=(AÚA¾Ú #) |
Letting a=Ú |
(AÚA¾Ú #)Ú (B·B¾Ú #)=(AÚA¾Ú #) |
Since Ú=Ñ, then Ú*=Ñ*=D=· |
(AÚA¾ D)Ú (B·B¾ D)=(AÚA¾ D) |
Since Ú=D, then Ú#=Ñ#= |
(AÚ A¯)Ú (B· B¯ )=(AÚ A¯ ) |
Since the bar '¯'
in Boolean, Post and Kleenean algebras corresponds to D
operator in AOP. |
(B· B¯ )Ú(AÚ A¯) =(AÚ A¯ ) |
Since Ú
is a commutative operator we re-order the terms on the left side |
(A· A¯ )Ú(BÚ B¯) =( BÚ B¯) |
By letting A=B and
B=A which does not change the equation. This is Kleene's second law. Q.E.D. |
|