
 

 

A New  

Set of Unary and Binary Operators  

With  

A New Algebraic System  

For  

Multiple-Valued Logic Systems: 

THE ALGEBRA OF PRIORITY  

(AOP) 
  
  
 

By 
Abu-Msameh, Ramadan K. 
 http://gtode.users3.50megs.com 

abumsamh@emirates.net.ae 
 

February 14, 2001 



 I 

Table Of Content 
1 INTRODUCTION............................................................................................................ 2 

2 AOP PRIORITY CONCEPT AND PRINCIPLE ......................................................... 5 
2.1 DIGITAL SYSTEMS AND DIGITAL EVENTS.................................................................... 5 
2.2 PRIORITY CONCEPT ..................................................................................................... 6 
2.3 PRIORITY CONVENTION............................................................................................... 6 
2.4 PRIORITY ASSIGNMENT ............................................................................................... 7 

3 AOP UNARY OPERATORS AND OPERATIONS..................................................... 8 
3.1 IMAGE OPERATION...................................................................................................... 8 
3.2 CONSERVATIVE UNARY OPERATORS........................................................................... 9 

3.2.1 Down-Del Operator .................................................................................................. 9 
3.2.2 UpDel Operator ........................................................................................................ 9 
3.2.3 Inverse Operator ....................................................................................................... 9 

3.3 ORTHOGONAL OPERATORS ....................................................................................... 10 
3.4 UNARY OPERATIONS................................................................................................. 10 

3.4.1 Sequential Image operation .................................................................................... 10 
3.4.2 Star Operation......................................................................................................... 11 
3.4.3 Costar Operation..................................................................................................... 11 

4 AOP BINARY OPERATORS AND OPERATIONS.................................................. 11 
4.1 PRIORITORS ............................................................................................................... 11 
4.2 AOP OPERATIONS..................................................................................................... 13 

4.2.1 Notations, definitions and terminology ................................................................... 13 
4.2.2 Infimum Operation .................................................................................................. 13 
4.2.3 Supremum-Operation .............................................................................................. 14 
4.2.4 Star Operation on Prioritors................................................................................... 14 
4.2.5 Costar Operation on Prioritors............................................................................... 14 

5 AOP TAS SYSTEMS..................................................................................................... 15 
5.1 DEFINITIONS.............................................................................................................. 15 
5.2 TERMINOLOGY .......................................................................................................... 15 
5.3 TAS CODES .............................................................................................................. 16 
5.4 TAS SYSTEMS........................................................................................................... 16 

6 AOP THEOREMS ......................................................................................................... 17 
6.1 TERMINOLOGY .......................................................................................................... 17 
6.2 ITAS INTRINSIC THEOREMS...................................................................................... 18 
6.3 STAS EXTRINSIC THEOREMS.................................................................................... 19 
6.4 LTAS THEOREMS ..................................................................................................... 19 

7 AOP ORTHOGONAL THEOREMS........................................................................... 20 
7.1 NOTATIONS, TERMINOLOGY AND DEFINITIONS......................................................... 21 
7.2 ORTHOGONAL THEOREM-I ........................................................................................ 21 
7.3 ORTHOGONAL THEOREM-II....................................................................................... 22 
7.4 AOP REPRESENTATIONS OF MVL FUNCTIONS .......................................................... 23 

7.4.1 Lowest Start-Off Representation ............................................................................. 23 
7.4.2 Examples of MVL functions..................................................................................... 23 

8 AOP EXPANSION THEOREMS................................................................................. 24 



 II 

8.1 EXPANSION THEOREM-I AND II................................................................................. 24 
8.2 VARIABLES EXPANSION ............................................................................................ 25 

9 AOP IMAGE-SCALING THEOREM......................................................................... 25 
9.1 BINARY AND PRIORITY-ASSIGNMENT IMAGE OPERATIONS ........................................ 25 
9.2 UNIFORM IMAGE-SCALING THEOREM ....................................................................... 26 

9.2.1 Examples On Uniform Image-Scaling Theorem ..................................................... 26 
9.2.2 Deriving DeMorgan's laws by AOP........................................................................ 27 

10 AOP UNIFORM DEGENERACY ........................................................................... 27 
10.1 NOTATIONS AND TERMINOLOGY ............................................................................... 27 
10.2 UNIFORM DEGENERACY OF PRIORITORS ................................................................... 28 
10.3 UNIFORM DEGENERACY OF PRIORITY FUNCTIONS .................................................... 29 

10.3.1 Examples on Uniform Degeneracy of Priority Functions..................................... 29 
10.4 UNIFORM DEGENERACY OF PRIORITY EQUATIONS.................................................... 30 

11 DESIGN EXAMPLES ............................................................................................... 32 
11.1 DESIGN OF TERNARY MULTIPLICATION OPERATION................................................. 32 

11.1.1 Ternary Multiplier Design Using Post algebra .................................................... 32 
11.1.2 Ternary Multiplier Design Using AOP Orthogonal Theorem-I............................ 32 
11.1.3 Ternary Multiplier Design Using AOP Orthogonal Theorem-II .......................... 33 
11.1.4 Ternary Multiplier Using AOP multi-operational set of basic operators............. 34 
11.1.5 Design Comparison............................................................................................... 34 

11.2 ONE MORE DESIGN OF 3S201:001:111 OPERATION .................................................. 35 
11.2.1 Design of 3S201:001:111 Using Post algebra...................................................... 35 
11.2.2 Design of 3S201:001:111 Using AOP Orthogonal theorem-I .............................. 35 
11.2.3 Design of 3S201:001:111 Using AOP Orthogonal theorem-II............................. 36 
11.2.4 Design of 3S201:001:111 Using AOP multi-operators set ................................... 36 
11.2.5 Design comparison................................................................................................ 37 

12 DERIVING OTHER ALGEBRAS FROM AOP .................................................... 37 
12.1.1 Deriving the Kleene's Laws from the Absorption Theorem III ............................. 37 

13 AOP VERSUS BOOLEAN AND POST ALGEBRAS............................................ 38 
13.1 AOP VERSUS BOOLEAN ALGEBRA ........................................................................... 38 
13.2 AOP VERSUS POST ALGEBRA ................................................................................... 38 

13.2.1 Operators Differences ........................................................................................... 39 
13.2.2 Theorems Differences............................................................................................ 39 
13.2.3 Concepts Differences............................................................................................. 40 

14 CONCLUSION AND EXPECTATIONS................................................................. 41 

15 TABLES ...................................................................................................................... 42 

16 FIGURES .................................................................................................................... 49 

17 BIBLIOGRAPHY ...................................................................................................... 50 

 



 III 

 Figures  
Figure 1: Ternary Multiplier By Post algebra......................................................................... 32 
Figure 2: Ternary Multiplier By AOP Orthogonal-I ............................................................... 33 
Figure 3: Ternary Multiplier By AOP Orthogonal-II .............................................................. 34 
Figure 4: Ternary Multiplier By Multi-Operation set of AOP................................................. 34 
Figure 5: Unary S-Code Format.............................................................................................. 49 
Figure 6: Orthogonal Code Format......................................................................................... 49 
Figure 7: Prioritors S-Code Format........................................................................................ 49 
Figure 8: Map Of All Possible Pairs of Ternary Prioritors .................................................... 49 

 Tables  
Table 1: ITAS Intrinsic Theorems ............................................................................................ 18 
Table 2: STAS Extrinsic Theorems........................................................................................... 19 
Table 3: LTAS Theorems.......................................................................................................... 20 
Table 4: Design-I Statistics and Reduction Percentages ......................................................... 35 
Table 5: Design-II Statistics and Reduction Percentages........................................................ 37 
Table 6: Conservative Unary Operators.................................................................................. 42 
Table 7: Orthogonal Operators in Binary, Ternary, and Quaternary Systems ................................ 43 
Table 8: Prioritors List In Binary, Ternary And Quaternary Digital Systems ........................ 44 
Table 9: Number Of Prioritors In 2-31 Radices Systems......................................................... 45 
Table 10: Binary TAS systems.................................................................................................. 45 
Table 11: Ternary TAS Systems ............................................................................................... 45 
Table 12: Transferring The Function Table ............................................................................ 46 
Table 13: Uniform Image-Scaling Of α=Q1 Under f=4S3012 ............................................... 46 
Table 14: The Uniform Degeneracy Of Prioritors................................................................... 47 
Table 15: Degenerate Equations Of Distribution Theorem..................................................... 48 

 

Definitions 
Definition 1: Priority Concept ................................................................................................... 6 
Definition 2: Priority Convention .............................................................................................. 6 
Definition 3: Priority Principle.................................................................................................. 7 
Definition 4: Priority-Assignment Code .................................................................................... 7 
Definition 5: Unary Image Operator ......................................................................................... 8 
Definition 6: Unary Conservative Operators............................................................................. 9 
Definition 7: Down-Del Operator '∇ ' ........................................................................................ 9 
Definition 8: Up-Del Operator .................................................................................................. 9 
Definition 9: Inverse Operator................................................................................................. 10 
Definition 10: Unary Orthogonal Operator............................................................................. 10 
Definition 11: Sequential Image Operation ............................................................................. 10 
Definition 12: Star Operation .................................................................................................. 11 
Definition 13: The Costar Operation ....................................................................................... 11 
Definition 14: AOP Prioritors.................................................................................................. 12 
Definition 15: Infimum digit..................................................................................................... 13 
Definition 16: Supremum digit................................................................................................. 14 
Definition 17: TAS BASE ......................................................................................................... 15 
Definition 18: TAS System........................................................................................................ 15 
Definition 19: Mate Operation and Operator.......................................................................... 15 
Definition 20: Comate Operation and Operator...................................................................... 15 
Definition 21: Counting Operator............................................................................................ 21 
Definition 22: Lowest Start-Off Representation....................................................................... 23 



 IV 

Definition 23: Priority-assignment Image operation............................................................... 25 
Definition 24: The binary image operation.............................................................................. 25 
Definition 25: Priority functions and Priority equations......................................................... 28 
Definition 26: Uniform Degeneracy of Prioritors ................................................................... 28 
Definition 27: Uniform Degeneracy of functions..................................................................... 29 

 

Theorems 
Theorem 1: Number of Prioritors ............................................................................................ 13 
Theorem 2: ITAS Theorems (19).............................................................................................. 18 
Theorem 21: STAS Extrinsic Theorems (12)............................................................................ 19 
Theorem 34: LTAS theorems (2) .............................................................................................. 20 
Theorem 37: Orthogonal Theorem-I........................................................................................ 22 
Theorem 38: Orthogonal Theorem-II ...................................................................................... 22 
Theorem 39: Expansion Theorem-I.......................................................................................... 24 
Theorem 40: Expansion Theorem-II ........................................................................................ 24 
Theorem 41: Uniform Image-Scaling (UIS) Theorem ............................................................. 26 
Theorem 42: Uniform Degeneracy Equivalence Theorem ...................................................... 30 
Theorem 43: Equations Uniform Degeneracy Theorem .......................................................... 31 

 
Examples  

Example 1: On Priority Convention........................................................................................... 7 
Example 2: On Priority Convention........................................................................................... 7 
Example 3: On Priority-assignment........................................................................................... 7 
Example 4: On Priority Assignment........................................................................................... 7 
Example 5: On Sequential Images of Unary Operators .......................................................... 11 
Example 6: On The Star Operation.......................................................................................... 11 
Example 7: On The Costar Operation ..................................................................................... 11 
Example 8: On The Star Operation of Prioritors .................................................................... 14 
Example 9: On The Costar Operation of Prioritors ................................................................ 14 
Example 10: On Counting Operator........................................................................................ 21 
Example 11: On MVL representations by AOP ....................................................................... 23 
Example 12: On Orthogonal Theorems-I&II........................................................................... 24 
Example 13: On Variables Expansion I & II ........................................................................... 25 
Example 14: On Variable Expansion-I .................................................................................... 25 
Example 15: On Variable Expansion-II................................................................................... 25 
Example 16: On Prioritors Images Operations ....................................................................... 26 
Example 17: On Uniform Image-Scaling Theorem (QJ,4S1302) ............................................ 26 
Example 18: On Uniform Image-Scaling Theorem (Q1=MIN,4S3012) .................................. 27 
Example 19: On Uniform Image-Scaling Theorem (Q1,4S0123) ............................................ 27 
Example 20: On Uniform Image-Scaling Theorem (T1,3S012)............................................... 27 
Example 21: On Deriving DeMorgan's Laws from UIS theorem ............................................ 27 
Example 22: On Uniform Degeneracy of Prioritors................................................................ 28 
Example 23: On Using Uniform Degeneracy Table ................................................................ 28 
Example 24: On Uniform Degeneracy of Q1 and QO ............................................................. 28 
Example 25: On Uniform Degeneracy of B1 (AND), B2 (OR) ................................................ 29 
Example 26: On Duality from AOP Degeneracy ..................................................................... 29 
Example 27: On Uniform Degeneracy of functions without constants.................................... 29 
Example 28: On Uniform Degeneracy of functions with constants ......................................... 29 
Example 29: On Uniform Degeneracy of functions with constants ......................................... 29 
Example 30: On Uniform Degeneracy of functions with constants ......................................... 30 



 V 

Example 31: On Uniform Degeneracy Equivalence Theorem................................................. 30 
Example 32: On Uniform Degeneracy Equivalence Theorem with constants......................... 30 
Example 33: On Uniform Degeneracy of A+(B+1)=1 ............................................................ 31 
Example 34: On Uniform Degeneracy of Equations with constants ....................................... 31 
Example 35: On Uniform Degeneracy of Distribution Theorem for z=4 ................................ 31 
Example 36: Ternary Multiplier Design using Post algebra................................................... 32 
Example 37: Design using AOP Orthogonal Theorem-I ......................................................... 33 
Example 38: Design using AOP Orthogonal Theorem-II ........................................................ 33 
Example 39: Using AOP multi-operational set of basic operators ......................................... 34 
Example 40: Design of 3S201:001:111 Using Operation using Post algebra ........................ 35 
Example 41: Design of 3S201:001:111 Using AOP Orthogonal theorem-I............................ 36 
Example 42: Design of 3S201:001:111 Using AOP Orthogonal theorem-II .......................... 36 
Example 43: Design of 3S201:001:111 Using AOP multi-operators set................................. 36 



Abstract 
A New Set of Unary and Binary Operators  

With A New Algebraic System  
For Multiple-Valued Logic Systems: 

The Algebra Of Priority  
(AOP) 

 
By 

Abu-Msameh, R. K.  
http://gtode.users3.50megs.com 

abumsamh@emirates.net.ae 
 

 

 

 The aim of this paper is to introduce a new set of unary and binary operators 
with a new algebraic system that will allow the design of MVL digital circuits in a way 
that is simpler and much more efficient than the traditional operators of MVL 
systems. The algebra associated with these operators is called the algebra of 
priority (AOP). It is a new multi-valued multi-operational switching algebra. This 
newly introduced algebra was developed based on the priority concept. This paper 
(1) presents the priority concept and principle; (2) presents the development of AOP 
based on the priority principle; (3) presents the new binary operators of AOP which 
are called "prioritors" for binary, ternary and quaternary systems; (4) proves that the 
number of prioritors in a z-radix digital system is z!; (5) presents the basic intrinsic 
and extrinsic theorems of AOP; (6) presents the orthogonal theorem-I and II, which 
extends the Post representations of MVL functions from two representations 
(sum-of-products and product-of-sums) to z! representations; (7) presents the 
expansion theorem I and II, which extends the Post expansions of MVL functions 
from two expansions (sum-of-products and product-of-sums) to z! expansions (8) 
presents the uniform image-scaling theorem which replaces DeMorgan's laws (9) 
presents the absorption theorem-III which replaces Kleene's laws. (10) presents 
the uniform degeneracy theory which replaces the duality theory; (11) shows how 
to derive Boolean, Post algebra and Kleenean algebras from AOP and (12) presents 
design examples using AOP. 

Keywords of AOP: algebra of priority, conservative operators, orthogonal operators, 
priority principle, prioritors, infimum, supremum, STAS, ITAS, degeneracy, 
descendants, ancestors, Image-Scaling, child-equation, parent-equation, degenerate 
operators, degenerate equations. 

Keywords of MVL literature: multiple-valued logic, binary, ternary, quaternary, 
switching algebras, Boolean algebra, Post algebras, Kleenean algebra, function 
representations, Kleene�s laws, DeMorgan�s Laws, duality, Post representations, 
Post expansions.   
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A New Set of Unary and Binary Operators  
With A New Algebraic System  

For Multiple-Valued Logic Systems: 
The Algebra Of Priority  

(AOP) 

1 INTRODUCTION  
Background: Binary logic is an area that deals with the representation of data with 
two values �0� and �1�. The problem encountered with binary logic is the large number 
of bits that is needed to represent data. This problem is reflected at the hardware 
level in two well-known problems: pinout problem and interconnection problem. 
The solution to this problem was to increase the number of its logical values and 
not to limit them to two logical values.  This solution gave rise to the development 
of Multiple-valued Logic (MVL) field, which uses multiple logical values to 
represent data. The number of these logical values is usually expected to be three or 
more. For example, in a four-valued system, MVL uses four values to represent data. 
If these values were to be numerical values, then 0,1,2, and 3 would be used. In this 
way, MVL solves (theoretically) the pinout problem and it simplifies circuit complexity 
of binary logic circuits.  

Motivation: However, MVL designs digital circuits using the traditional operators 
MIN, MAX, MV-NOT, and complementary operators. The problem encountered in this 
design, is the large number of traditional operators that is needed to build up a digital 
circuit. This large number increases complexity and interconnections of MVL 
circuits. The more operators a MVL circuit needs, the more complex it gets and its 
interconnections get even more complex. A solution to this problem is to increase 
its basic operators of design and not limit them to the traditional operators. This 
approach will give rise to a new field called Multiple-Operational Logic (MOL), 
which uses multiple-operations from unary and binary operations to design digital 
circuits.  Thus, MOL is aimed at introducing into logical systems a variety of 
new operators that will make design more flexible than the MVL traditional 
operators.  

Contributions: In doing that, I developed a new set of unary and binary operators 
that will increase the number of basic operators and will make design more flexible 
than using the traditional operators alone. The new unary operators are classified 
into two categories: conservative operators (covered in § 3.2) and orthogonal 
operators (covered in § 3.3). The new binary operations are called prioritors 
(covered in § 4.2). The number of these operators for a z-radix system is z2(z-1) for its 
orthogonal operators, z! for its conservative operators, and z! for its prioritors. The 
traditional operators are a subset of the new operators1.   

In 1938, Claude Shannon showed how the logical laws of Boolean algebra, 
founded by George Boole in 1849, could be used to synthesize digital circuits 
implemented by AND, OR, and NOT operators. Also, researchers showed how the 
laws of Post algebra, could be used to synthesize digital circuits implemented by 

                                            
1 From this point and on, we will refer to the sets of prioritors, conservative operators, and 
orthogonal operators by the term " AOP basic operators" or "the new operators".  
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MIN, MAX, MV-NOT, and complementary operators. Unfortunately, these algebras 
cannot be fully used with the new operators of AOP to synthesize digital circuits2. 
Boolean algebra is wonderful for the binary system but it does not work for other 
systems. Post algebra works for subsets of the new operators of AOP but not for all 
of them. Thus, Boolean and Post algebras cannot be fully used to synthesize digital 
circuits implemented by the various combinations of prioritors, conservative 
operators, and orthogonal operators3. With no other choice left, I developed a new 
algebraic system, called the Algebra of Priority (AOP), that can fully serve these 
new operators and be used to synthesize digital circuits implemented by the various 
combinations out of these new operators. Thus, AOP uses the new set of 
operators for circuits design and provides all the rules and procedures that 
lead to the design of any given digital circuit in a way that is simpler and much 
more efficient than the designs obtained by the traditional operators of MVL 
systems. Since AOP works for large set of operators, it is described as a multi-
operational algebra and since it works for any z-radix system, it is described as a 
multi-valued algebra. Thus, AOP is a multi-valued, multi-operational algebra.  

In this paper, I solved two design problems (covered in § 11) using the traditional 
operators and using the new operators. In the first design (covered in § 11.1), I used 
the traditional operators, by Post algebra, and obtained the ternary multiplication 
operation by sum-of-products as a composition of 9 binary operators (6 MIN, 3 MAX) 
and 8 unary operators and by product-of-sums as a composition of 15 binary 
operators (9 MIN, 6 MAX) and 14 unary operators. In the second design (covered in 
§ 11.2), I used the traditional operators, using Post algebra, and obtained the given 
ternary operation by sum-of-products as a composition of 16 binary operators and 12 
unary operators and by product-of-sums as a composition of 20 binary operators and 
16 unary operators.  

For the same two problems, I obtained different designs using the new operators of 
AOP. For the first problem, I designed the multiplication operation (covered in § 
11.1.4) by 3 binary operators and one unary-operator. For the second example 
(covered in § 11.2.4), I designed the circuit by 3 binary operators and one unary 
operator.  

When we compare the designs obtained by the traditional operators and the ones 
obtained by the new operators of AOP, we find the following: In the first example, for 
the sum-of-products, AOP cuts the binary operators using its multi-operations by 66% 
and the unary operators by 87.5%. For the products-of-sum, AOP cuts the binary 
operators using its multi-operations by 80% and the unary operators by 92.85%.  In 
the second example, for the sum-of-products, AOP cuts the binary operators using its 
multi-operations by 85% and the unary operators by 93.5%. For the products-of-sum, 
AOP cuts the binary operators using its multi-operations by 93.75% and the unary 
operators by 81.25%.  Thus, these cuts show that the new operators can reduce 
circuit complexity of MVL circuits which lead to low power consumption, less 
propagation delay, higher speed, and less chip space.  

The algebra associated with these new operators was developed based on the 
priority concept (covered in § 2) from which its name was derived (The Algebra of 
Priority AOP). Thus for a z-radix system, AOP is based on "z" logical values, z! binary 

                                            
2 See my web site http://gtode.users3.50megs.com 
3 See similarities and differences between AOP and Post algebra 
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operators called �prioritors�, z! unary operators called �conservative operators� 
and z2(z-1) unary operators called �orthogonal operators�.  

It turned out that AOP is a very rich algebraic system in terms of its concepts, 
theorems and operators. Its results agree with the results obtained by Boolean 
algebra and by Post algebra and at the same time it expands the concepts and 
theorems of Post algebra even though it was developed totally from concepts that 
are completely independent of Post concepts and of Boolean concepts.  For 
examples:  

1. AOP extends the representations of MVL functions from two representations 
to z! representations (covered in § 7) using its orthogonal theorems I & II. Its 
orthogonal theorem-II  (covered in § 7.3) provides a much efficient 
representations of MVL functions for hardware implementation than Post 
representations because it uses less number of binary operations.  
 

2. AOP extends the expansion of MVL functions from two expansions to z! 
expansions  (covered in § 8)using its expansions theorems I&II.  
 

3. AOP extends DeMorgan's laws by its Image-Scaling theorem (covered in § 
9.2). In Boolean and Post algebras we can break the image of a binary 
operation by DeMorgan�s laws (see Example 21) only if we use the NOT and 
MV-NOT operators. However, under the Image-Scaling theorem of AOP, we can 
break the image of a binary operation under all conservative unary operators 
(see Example 18). 
 

4. AOP extends Kleene's laws by its absorption theorem III (covered in § 12.1.1).  
 

5. AOP extends the current duality theory by its degeneracy theory4 (covered in § 
10).  Instead of saying an operator has a dual (see Example 26) we say an 
operator has �descendants� or �degenerate operators�. The number of 
descendants for an operator depends on the system radix and on the operator 
itself.  For prioritors, the number of descendants depends on the system radix 
only and it is equal to z!.  For example, it is 2 for the binary system, 6 for the 
ternary system and 24 for the quaternary system.  
 
The degeneracy theory of AOP agrees with the results of Boolean algebra 
since the number of descendants is always �2�.  However, it differs from Post 
algebra for non-binary radii. For example, in ternary system, the MIN under 
AOP has six descendants rather than two under Post algebra; in the 
quaternary system, it has 24 descendants rather than two under Post algebra. 
 

6. The degeneracy theory extends duality in binary system to be applied for 
other binary operators other than AND or OR.  For example, the degeneracy 
theory extends the �duality� concept in Boolean algebra to cover the XOR, 

                                            

4 The degeneracy theory is much like "Object-Programming theory". The concepts of "inheritance", 
"ancestors", “descendants” can be now applied to hardware as well as it is done in software.  Object 
programming theory deals with data and code.  The degeneracy theory deals with operators (like 
data) and equations (like code). 
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and NXOR and others as well.  
 

7. AOP extends the duality concept of equations by its degeneracy theory 
(covered in § 10.4).  Instead of saying an equation has a dual we say an 
equation has �descendants�, �degenerate equations�, or �child-equations�.  
The number of child-equations for a parent-equation depends on the system 
radix and on the equation itself.  For priority equations5, the number of 
descendants depends on the system radix only and it is equal to z!.  For 
example, it is 2 for the binary system, 6 for the ternary system and 24 for the 
quaternary system (see Example 34). 
 
The degeneracy theory of AOP agrees with the results of Boolean algebra 
since the number of child-equations or �descendants� is always �2�.  However, 
it differs from Post algebra for non-binary radii.  For example, the 
distribution equation in ternary system has six descendants in AOP rather than 
two in Post algebra.  

2 AOP PRIORITY CONCEPT AND PRINCIPLE  
In reality, we always face parallel events that occur at the same time. At 

some point in time, these parallel events are to be processed sequentially by a 
processing system that takes each event one at a time until it processes all of 
them. The picking process depends on the events and on how the system is 
programmed to handle them. To program the processing system, we use the 
concepts of priority to give each event a distinct priority that determines its 
processing order by the processing system. Based on a priority assignment and a 
priority convention, the processing system determines how to process these events 
sequentially.  

 For example, we imply the concept of priority in traffic control  signs: green 
(go), red (stop), and yellow (slow down for a stop). The vehicles arrive at the same 
time from different directions to a collective point (parallel events). The traffic signs 
(processing system) at the collective point give each direction a priority signal to 
handle its events. The direction that receives the green light (priority to pass by 
convention) allows its events (vehicles) to flow in the system structure (streets). The 
direction that receives the red light (priority to stop by convention) puts its events in 
that direction to stand by.  

Another example is found in computers. A microprocessor, at some point in 
time, receives parallel interrupts (events), which require processing. The 
microprocessor, by software or hardware means, determines which interrupt should 
be first acknowledged for processing based on the priority of each interrupt.  

2.1 Digital Systems and Digital Events 
 In digital systems, there are components that process data represented by 
parallel digital signals. The components are the processing systems and the data 
signals are the parallel events. In this case, we can apply the priority concept, as 

                                            
5 When all the binary operators of an equation are prioritors we call it a priority equation 
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seen in the traffic example and others as well, to digital systems and develop a 
mathematical system that can describe any digital system and predicts the behavior 
of its components. To develop such a mathematical system, we will treat digital 
signals (events) as variables, processing systems (processors) as operators 
(mathematical operations) and signals levels as states (digits). The mathematical 
system that will be developed based on the priority concept in this paper is called 
�The algebra of priority (AOP)� in an analogy to �The Algebra of logic�.   

In summary, AOP describes a multi-valued digital system with �z� distinct 
states or (logical-value) and it refers to these states by '0', '1', ..., up to 'z-1'.  The 
set {0, 1, �, z-1} is called the states-set or (logic-set)  and each entry in the set is 
referred to as a state or logical-value.   

2.2 Priority Concept 
The logic concept is the keystone behind Boolean algebra. In a similar way, the 
priority concept is the keystone behind AOP.  It is a universal and a natural concept 
that I did not create nor discovered but rather used.  From the aforementioned 
introduction we can verbalize the priority concept in a standard statement as stated in 
Definition 1 

Definition 1: Priority Concept 
In a processing environment, the event with the highest priority in a group of events and 
distinct priorities will be acknowledged first by the environment processing system.  

Assume we have �n� digital signals that run through an n-line data bus to a digital 
component in a z-radix digital system where each line is represented by an 
independent variable. This gives us �n� independent variables.  These �n� signals are 
parallel events that reached the component at the same time (in theory). Assume 
now the component is going to process all of these events according to the priority 
concept by allowing the event with the highest priority to pass throughout its 
output based on a priority assignment determined by the logical-values of the 
signals. This requires from us to assign a distinct priority for each logical-value in 
the logic-set. Since the logic-set has “z” logical values, then there are “z” 
distinct priorities needed to represent these logical values. The set of these 
distinct priorities is called the priority set and is defined to be {0, 1, 2, 3, ..., z-1} 
where each digit in the set is called a priority or a priority-value. The assignment of 
distinct priorities to the logical values of the logic-set or vice versa is called a priority-
assignment. By convention, we will assume the order of priorities to be the 
numerical order of the priority values. That is, the priority with the least value 
represents the least priority and the priority with the highest value represents the 
highest priority. This statement is standardized in Definition 2. From this definition, 
the �0� priority represents the least priority and the �z-1� represents the highest 
priority.  

2.3 Priority Convention  
Definition 2: Priority Convention 
The order of priorities is defined to be the numerical order of the priority-values. That is, the 
priority-value with the least value is the least priority and the priority-value with the highest 
value is the highest priority.  
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Example 1: On Priority Convention 
In our traffic example we have three logical values (z=3): 'Red', 'Green', and 'Yellow'. 
Based on the priority convention of Definition 2, the priority of the 'Green' logical 
value is '2', the priority of the 'Yellow' logical-value is '1', and the priority of the 'Red' 
logical value is '0'. The highest priority value is '2', thus the 'Green' logical value has 
the highest priority. The least priority is '0', thus the 'Red' logical value has the least 
priority.  
Example 2: On Priority Convention 
In the quaternary system, assume the priority of each digit is defined as follows: the 
"1" digit has the first priority, the "3" digit has the second priority, the "0" digit has the 
third priority and the "2" digit has the fourth priority. From this assumption, we see 
that the �1� digit must have the highest priority and the �2� digit must have the least 
priority. According to the priority convention of Definition 2, the �1� digit has a priority 
of �3�, the �3� digit has a priority of �2�, the �0� digit has a priority of �1� and the �2� digit 
has a priority of �0�.  

  At this point we need to translate the priority concept into a statement relevant 
to digital systems called a "priority principle" as defined in Definition 3.  

Definition 3: Priority Principle  
The priority principle states that �in a priority based digital system, the digital event with the 
highest priority in a group of digital events and distinct priorities will be acknowledged first 
by the processing system according to a given priority-assignment which assigns a distinct 
priority for each logical value in the logic-set of a z-radix digital system�.  
 

2.4 Priority Assignment 
The priority assignment is a program by which the system will manage the 
processing order of its events. 

Example 3: On Priority-assignment 
In the quaternary digital system, we can assign a priority of 0 for the '2' logical value; 
3 for the '1' logical value; 2 for the '3' logical value; 1 for the '0' logical value. Under 
this assignment, the logical-value "1" has the highest priority, the logical-value "3" 
has a less priority than the logical-value "1", the logical-value "0" has a less priority 
than the logical-value "3" and the logical-value "2" has a less priority than the logical-
value "0".  

AOP expresses the priority-assignment in a code called the "priority s-code" or 
"priority-assignment s-code" as defined by Definition 4.  

Definition 4: Priority-Assignment Code 
The priority-assignment code lists the 'z' distinct logical-values in a number prefixed with 
"zS" so that the position of each logical-value from right (counting from zero) in that number 
is its priority.  

Example 4: On Priority Assignment 
The s-code for the priority-assignment defined by Example 2 is written as 4S1302. 
The prefix is "4S" and the priority assignment is �1302�. In this priority assignment: 
the "2" is the first digit from right with position "0" (counting from 0) the "0" is the 
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second digit from right with position '1', the "3" is the third digit from right with position 
'2', and the "1" is the fourth digit from right with position '3'. The position of each digit 
is the priority of that digit. Thus, the "2" has a '0' priority; the "0" has a '1' priority; 
the "3" has a '2' priority and the "1" has a '3' priority. In a similar way, the s-code for 
the priority-assignment defined by Example 1 is written as 3S210. 

 In the s-code of the priority-assignment, the position of a digit reflects its 
priority relative to the other digits. Each digit has a higher priority than any other digit 
to its right and a less priority than any other digit to its left. Therefore, the least 
significant digit (the first digit from right) has the least priority of "0" and the most 
significant digit (the first digit from left) has the highest priority of 'z-1'.  

 Before we move to the next section to continue to use the priority principle to 
derive the binary operators of AOP, which are called prioritors, we have to stop at 
this stage and consider important and essential operations as a background to the 
section.  

3 AOP Unary Operators and Operations 
AOP unary operators are operations that operate on variables. In a z-radix digital 
system, there are zz unary operations. The set of unary operators is partitioned into 
"m" partitions, where "m" is the number of partitions of system radix 'Z' into 
positive summands6. AOP uses two out of these "m" partitions in a z-radix digital 
system. The first partition is called the conservative partition and its operators are 
called "conservative operators", the second partition is called the orthogonal 
partition and its operators are called "orthogonal operators". In this section, we will 
describe only these two types of operators.  

3.1 Image Operation 
 Unary operators are one-variable functions that map the logic-set into itself. 
Because we will use unary functions as unary operators, we modified the "f(x)" 
functional notation to the "x f " operational notation as defined by Definition 5.  

Definition 5: Unary Image Operator 
The unary image operator, denoted by “ f”, is defined as x f =f(x) where �x� is a 
parameter and �f� is a unary operator.  

 In AOP, we identify unary operators by the unary s-code. The s-code lists the 
function table of a unary operator in a string of digits starting from right to left prefixed 
with 'zS' where 'z' is the system radix and 'S' is a character stands for labeling the 
code as a system-code. Figure 5 shows the format of the unary s-code using the 
4S1023 unary operator.  

According to Definition 5, the unary operator must be shown to the right of the image 
“ ” operator. Using f=2S01 (NOT) operator in the binary system, the following are 
unary image operations 0 f =1, 1 f =0. Under f=4S1023, 0 f =3, 1 f =2, 2 f =0, 3 f 
=1. Under f=4S1122, 0 f =2, 1 f =2, 2 f =1, 3 f =1. Under f=4S3023 0 f =3, 1 f =2, 
2 f =0, 3 f =3.  
                                            
6 For example p(1)=1, p(2)=2, p(3)=3, p(4)=5, … 
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3.2 Conservative Unary Operators 
 At some point in time, in MVL digital systems we have to take the image of a 
data set and then retrieve this data set at another point in time. Such cases are seen 
in data encryption at the hardware and software levels and in data storage devices 
like MVL flip-flops. Boolean algebra uses the NOT operator to convert and reconvert 
data. Post algebra uses the MV-NOT operator. AOP uses a more generalized set of 
operators to convert and reconvert data, which are called �conservative operators7� 
as defined by Definition 6.  

Definition 6: Unary Conservative Operators 
A conservative unary operator is an operator that is represented by a one-to-one function that 
maps the logic-set into itself.  

 The number of conservative operators in a z-radix digital system is equal to z! 
[14]p.172. Table 6 shows a list of all conservative operators in the binary, ternary and 
quaternary systems. The table lists conservative unary operators using the unary s-
code under the "α" column.  

There are two special conservative unary operators which are: Down-Del and Up-Del 
operators. 

3.2.1 Down-Del Operator  
Definition 7: Down-Del Operator '∇∇∇∇ ' 
The Down-Del operator, denoted by "∇ ", is given by the s-code as ∇ =zS(z-1)���3210.  

 The Down-Del operator is a unary operator where the image of a variable "A" 
under it is always equal to the variable itself. That is, A  ∇  =A (this property is called 
the identity property of the Down-Del operator). For example, the Down-Del 
operator is ∇ =2S10 in the binary system, ∇ =3S210 in the ternary system and 
∇ =4S3210 in the quaternary system.  

3.2.2 UpDel Operator 
Definition 8: Up-Del Operator 
The Up-Del operator, denoted by "∆", is given by ∆=zS0123���(z-1).  
 The Up-Del operator is a unary operator where the image of a variable "A" 
under it is always equal to Z-A-1. That is, A∆ =Z-A-1. This operator corresponds to 
the MV-NOT or complement operator in Post algebra and for NOT operator in 
Boolean algebra. For example, the Up-Del operator is ∆=2S01 in the binary system, 
∆=3S012 in the ternary system and ∆=4S0123 in the quaternary system.  

3.2.3 Inverse Operator 

In AOP, data retrieval is done by the use of unary operators called the inverse unary 
operators as defined by Definition 9.  

                                            
7 AOP uses this name, because these operators preserve data and the converted data can be 
retrieved without any loss. 
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Definition 9: Inverse Operator 
If "y" is a conservative unary operator, then y- is the inverse of "y" if and only if (A y )  y- = 
(A y-) y =∇ .  

Where �∇ � is the Down-Del unary operator (see Definition 7) and ‘-’ is the inverse 
operator. If y=y-, then 'y' is called a self-inverse operator. Table 6 shows the 
inverse of all conservative operators in the binary, ternary and quaternary systems 
listed under the "α" and "α-" columns. 

At the hardware level in AOP, conservative operators are called �converters� and 
self-inverse operators are called �inverters�.  

3.3 Orthogonal Operators 
 Post algebra uses the generalized complementation operators C0, ... Cn-1 
where "n" is the order of Post algebra [4]. Boolean algebra uses the NOT 
complement operator. AOP uses a more generalized set of unary operators called 
the �orthogonal operators� as defined in Definition 10. The generalized 
complementation operators in Post algebra and the NOT operator in Boolean algebra 
are a subset of the orthogonal operators of AOP.  

Definition 10: Unary Orthogonal Operator 
The unary orthogonal operator in AOP is defined as x∆ abc={ c if x=a and b otherwise}. 

 The �c� is called the active-state digit, �b� is called the inactive-state digit, �a� is 
called the activating-digit, �x� is a parameter and �∆ � is the orthogonal operator 
symbol. The image of �x� under a unary orthogonal operator is equal to the active-
state digit when �x=a� and is equal to the inactive state digit when �x� is not equal to 
�a�. For example: 0∆3 01=0, 1∆3 01=0, 2∆3 01=0, 3∆3 01=1.  The number of unary 
orthogonal operators in a z-radix digital system is given by ϕ(z)=z²(z-1).Table 7 
shows a list of all orthogonal operators of AOP in the quaternary, ternary and binary 
systems using the ΩΩΩΩ-code whose format is shown in Figure 6. 

3.4 Unary Operations 
3.4.1 Sequential Image operation 

 By Definition 5 we can take the image of variables but sometimes in AOP 
there are situations where we have to take the image of a unary operation by another 
unary operation as defined in Definition 11.  

Definition 11: Sequential Image Operation 
Let �f� and �y� be two unary operators. The image of �y� under �f� is written as y  f and is 
obtained by taking the �f� image of each digit in �y�. That is y  f=(f◦y)(x) =f(y(x)) where 'x' is 
a variable .  

 This sequential image operation is an associative [14] p192-193 but not 
commutative [14] p.191.  
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Example 5: On Sequential Images of Unary Operators 
Let f=4S3012 and y=4S0123. The image of �y� under �f� is y f =4S0123 4S3012 
=4S2103 and the image of �f� under �y� is f y=4S3012  4S0123 =4S0321. Note that f y 
≠ y f shows that this operation is not commutative.    

 There are two major unary operations in AOP: the star operation and the 
costar operation. Table 6 lists the star under the α* column and the costar under the 
α# column of each conservative unary operator.  

3.4.2 Star Operation  
Definition 12: Star Operation 
The star operation of a unary operator is obtained by flipping the function table in the unary s-
code so that the digit at the �ith� position becomes at the "(z-i-1)th" position and it is denoted 
by 'f*' and is read as the star of αααα. The image under f* is given by x  f*= (z-1-x)   f.  

Example 6: On The Star Operation 
In the binary system, for f=2S01 f*=2S10; f=2S10 f*=2S01. In the ternary system, 
for f=3S012 f*=3S210; f=3S021 f*=3S120; In the quaternary system, for f=4S0123, 
f*=4S3210; f=4S3210, f*=4S0123. 

3.4.3 Costar Operation  

Another operation that is related to the star operation is the costar operation. The 
"costar" operation generates a unary operator, say 'y', from a unary operator, say 'u', 
such that u y=u*.  

Definition 13: The Costar Operation 
The costar operation, denoted by �#�, is defined as f#=f-α * where �f� is a conservative 
unary operator.  
Example 7: On The Costar Operation 
Let f=4S3021=QK. The f# is obtained by taking the image of its inverse by its star. 
Using Table 6, f-=4S3102 and f*=4S1203=Q9. Thus, the costar of α is  

f#=f-   f*=4S3102 4S1203=4S1032=Q8.  

4 AOP Binary Operators and Operations 
4.1 Prioritors 
  Boolean algebra uses the AND and OR as its binary operators. Post algebra 
uses the MIN and MAX as its binary operators. AOP uses a more generalized set of 
binary operators called �prioritors” as defined in Definition 14. This makes AOP a 
multi-operational algebra. The AND, OR, MIN, MAX are a subset of the prioritors of 
AOP. The number of prioritors in a z-radix digital system is equal to z! as we will 
prove that later in this section. The number of prioritors is 2 in the binary digital 
system, 6 in the ternary digital system and 24 in the quaternary digital system. Table 
9 shows the number of prioritors for radices 2-31.  
 
 Before we define prioritors in AOP, we will reanalyze mathematically the 
priority-assignment represented by the priority s-code. The priority-assignment 
represents a one-to-one function that maps the priority set to the logic-set. The 
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domain of this function is the priority set and the range of the function is the logic-set. 
Since x∈ priority set and f(x)∈ logic-set, then the function notation f(X) is read as the 
digit that has the ‘x’ priority. For example, if f=4S3021, then f(1) is the digit that has 
the "1" priority which is 2. Similarly, f(0)=1; f(3)=3; f(2)=0. Since one-to-one functions 
are called unary conservative operators by AOP, then the X f notation is read as 
the digit that has the ‘x’ priority or the image of "X" under "f". For example, if 
f=4S3021, then 1 f is the digit with a priority of "1" which is 2 or the image of 1 under 
"f" which is 2. Similarly, 0 f =1; 3 f =3; 2 f =0.  
  

In AOP, we are interested in the priority of a given digit. Since the priority of a 
digit is the position of that digit in the priority s-code, then we are interested in the 
operator, which gives the priority of that digit as an image of the digit itself. That is, if 
f=4S1023 and f(A)=B, then we want the operator, say "y", that gives y(B)=A or 
Y(f(A))=A. Mathematically, "y" is called the inverse function of "f". In AOP, we call "y" 
the conservative inverse operator of "f" and it is denoted by "f-". For example, the 
inverse of f=4S1023 is f-=4S0132. Using the inverse operation, we can find the 
priority of any digit from the inverse of the priority-assignment. For example, if 
y=4S1023 then y-=4S0132 and the priority of 0 is 0 y-

 =2; of 1 is 1 y-=3; of 2 is 2 y-

=1; of 3 is 3 y-=0. Table 8 lists the inverse of each priority-assignment under the "α-" 
column for the binary, ternary, and quaternary systems. At this point we can 
introduce the definition of prioritors. 

 
AOP defines a prioritor as a processing system that defines distinct 

priorities for all the logical values of its inputs (events) by its priority-assignment 
and its output is equal to the input logical-value with the highest priority. 
Mathematically, the prioritors of AOP are defined by Definition 14 as two-event 
prioritors where we use the Greek alphabet "α" to refer to prioritors in general. Table 
8 lists the prioritors of AOP for the binary, ternary, and quaternary systems by their 
priority-assignment under the 'α' column and by the function table under the �s-code� 
column. 

 
Definition 14: AOP Prioritors 
A prioritor, denoted by "α", is defined as AααααB={A if A  αααα- ≥≥≥≥ B  αααα- ; B if   A  αααα- ≤≤≤≤ B  αααα-} 
 

 
Definition 14 states that if "A" has a priority higher than or equal to the priority 

of "B" then the result is equal to "A"; if "B" has a priority higher than or equal to the 
priority of "A" then the result is equal to "B". In another words, the result of the "α" 
prioritor is equal to the variable value with the highest priority.  

 
Table 8 lists the function table of prioritors in the binary, ternary and quaternary 

systems using a special coding system called the prioritors s-code. The prioritor s-
code identifies prioritors by a string of characters. It starts with the digital system 
radix, 'S' suffix and the operator function table listed from right to left where after each 
�z� digits there is a separating colon to simplify reading the code. Figure 7 shows the 
relation between the function table and the prioritor s-code using the 
QF=4S3210:2222:1211:0210 prioritor. 

 
The "α" symbol in AαB represents a binary operator, while in the unary image 

operation, Aα -, it represents the prioritor priority-assignment.  For example, in the 
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quaternary system, let α=Q7. From Table 8, this "α" in AαB is 
α=4S3210:2210:1111:0010 and in Aα - is α=4S1023 with an inverse of α-=4S0132.  
Theorem 1: Number of Prioritors 
The number of prioritors in a z-radix digital system is equal to z!.  
Proof: By the priority principle all priorities must be distinct. Thus the assignments 
of priorities to the logical-values of the logic-set or vise versa is a one-to-one 
mapping process. For the "0" logical-value we can assign "z" priorities, for the "1" 
logical-value we can assign "z-1" priorities, for the "2" logical-value we can assign "z-
2" priorities and for the ith logical-value we can assign "z-i" priorities. Since each 
priority assignment to each logical-value is independent from the other assignments, 
then using the counting principle [14]p.3, there are z(z-1)(z-2)(z-3) !!! 2*1=z! distinct 
ways of assigning priorities to all the z-distinct logical-values. Hence, there are z! 
distinct prioritors. Q.E.D.  See Table 9, which lists the number of prioritors for radices 
2-31. 
 
 Since a prioritor represents a binary operation then it has two parameters, 'A' 
and 'B', written in the form of AαB where ' α' is the prioritor symbol. Using α=Q1 in 
Table 8, we have 0α3=0, 1α3=1, 2α3=2, 3α3=3, 0α0=0; and α=QO we have 0α3=3, 
2α3=3, 0α1=1, 2α0=2, 1α1=1. 
 
 At the hardware level, prioritors are a general representation of digital gates. 
They can pass and block data flow. The signal with the least priority, which is called 
the prioritor infimum signal, is used to pass data out of the prioritor and the signal 
with the highest priority, which is called the prioritor supremum signal, is used to 
block the data flow. 
 

4.2 AOP Operations 
AOP Binary operations are operations that operate on prioritors. Some operate on 
the priority assignment and some operate on the prioritor function-table. 

4.2.1 Notations, definitions and terminology 

 In Boolean and Post algebras, we use the �+, ∨ � or �• , ∧ � symbols to stand for 
the OR (MAX) and AND (MIN) binary operators. AOP uses the Greek alphabets as 
symbols to stand for prioritors in its algebraic equations. In this paper, we use the αααα 
symbol to stand for prioritors in general. 

 Each prioritor has an infimum digit and a supremum-digit, which are called the 
prioritor switches. The infimum digit (a switch to open) allows the data flow to pass 
through the output of its prioritor. The supremum digit (a switch to close) blocks the 
data flow out the prioritor. This physical process at the hardware level is expressed 
mathematically by AOP in the following definitions.  
 
4.2.2 Infimum Operation 
 
Definition 15: Infimum digit 
The infimum digit of a prioritor operator, denoted by α V, is a digit in the logic-set such that 
α V α A =Aα α V =A.  
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 The infimum operation of the α operator is read as �the infimum digit of αααα� 
where � V� is called the inferiority operator. Table 8 lists the infimum digit of all 
prioritors in the quaternary, ternary and binary digital systems under the 'α V' 
column. Using Table 8, the infimum of α=QA is α V =0, of α=Q5 is α V =2, of α=QE 
is α V=1, of α=Q1 is α V=3, of α=QO is α V=0. In Boolean algebra, the �0� digit is 
the infimum digit of the OR operator (since 0+A=A). The �1� digit is the infimum digit 
of the AND operator (since 1•A=A).  

4.2.3 Supremum-Operation  
 
Definition 16: Supremum digit 
The supremum digit of a prioritor operator, denoted by αΛ , is a digit in the logic-set such 
that αΛ αA=Aα αΛ  =αΛ   

 The supremum operation of the α operator is read as �the supremum digit 
of αααα� where �Λ � is called the superiority operator. Table 8 lists the supremum 
digit of all prioritors in the quaternary, ternary and binary digital systems under the 
'αΛ ' column. Using Table 8, the supremum of α=QA is αΛ =1; of α=Q5 is αΛ =0; of 
α=QE is αΛ =2; of α=Q1 is αΛ =0; of α=QO is αΛ =3. In Boolean algebra, the �1� 
digit is the supremum digit of the OR operator (since 1+A=1). The �0� digit is the 
supremum digit of the AND operator (since 0•A=0).  

4.2.4 Star Operation on Prioritors  

 The star and costar operations are the major unary operations in AOP that 
operate on the priority-assignments of prioritors. Table 8 lists the star under the α* 
column and the costar under the α# column of each priority-assignment expressed 
by the priority s-code and by Q's, T's and B's codes for the quaternary, ternary, and 
binary systems. These two operations are very important operations in digital 
applications of AOP. They are used by STAS systems of AOP.  

When we apply the star operation on a priority assignment of a prioritor, we reverse 
(transpose) the order of its priorities. Thus, the star of a prioritor is a prioritor.  

Example 8: On The Star Operation of Prioritors 
In the binary system, for α=2S01 α*=2S10; α=2S10 α*=2S01. In the ternary 
system, for α=3S012 α*=3S210; α=3S021 α*=3S120; In the quaternary system, 
for α=4S0123, α*=4S3210; α=4S3210, α*=4S0123.  

4.2.5 Costar Operation on Prioritors  
The costar of a STAS system always corresponds to the NOT operator in Boolean, 
Post algebra and Kleenean algebras.  It is very important operation in using prioritors 
to design MVL flip-flop circuits.   
Example 9: On The Costar Operation of Prioritors 
Let α=4S3021=QK. The α# is obtained by taking the image of its inverse by its star. 
Using Table 8, α-=4S3102 and α*=4S1203=Q9. Thus, the costar of α is 
α#=α-α *=4S3102 4S1203=4S1032=Q8.  
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5 AOP TAS systems  
In the previous section, we presented the prioritors of AOP. These prioritors 

form a complete family that has a complete set of algebraic theorems.   These 
theorems enable us to use prioritors in digital circuits design.  

 
It is very important to find out these theorems to enable us design MVL circuits 

using all prioritors. Assume we are going to pick up a pair of two prioritors to 
determine all algebraic theorems that may exist between them. There are z!2 pairs of 
prioritors in a z-radix system. For example, Figure 8 shows all possible pairs 
in ternary system.  Lines show pairs of different prioritors and circles show pairs of 
the same prioritor.  For example, line "12" shows the (T1,T2) pair and line "36" shows 
the pair (T3,T6).  Circle "11" shows the (T1,T1) pair and circle "55" shows the pair 
(T5,T5).  So, the number of pairs is z!2=3!2=36.  

AOP partitions these pairs into z! groups, where each group is called a TAS 
(Two-Operational Algebraic System). Thus, we say that AOP has z! TAS systems. 
For example, there are 2 TAS systems in binary system, 6 TAS systems in ternary 
system and 24 TAS systems in quaternary system.  

5.1 Definitions 
Definition 17: TAS BASE 
Every TAS system has a unique base denoted by �ππππ’ where ππππ is a conservative unary operator. 
 
Definition 18: TAS System 
A TAS is defined mathematically as the set of all pairs of prioritors in the form of (αααα,αααα!) 
where ' αααα!' is called the mate of �αααα’.   
 
Definition 19: Mate Operation and Operator 
For any prioritor, say αααα, that belongs to a TAS there exists a mate denoted by αααα!!!! (read as 
mate of αααα) and is defined as αααα!!!!====ππππα ααα  where �!� is called the mate operator and “ππππ” is TAS 
base. 

Another operation that is related to a TAS system is the comate operation. The 
"comate" operation generates a unary operator, say 'y', from a unary operator, say 
'u', such that u  y=u!  

Definition 20: Comate Operation and Operator 
For any prioritor that belongs to a TAS system there is a conservative unary operator called a 
comate denoted by αααα???? and is defined as αααα????====αααα-α ααα!!!! (read as comate of αααα) and the �?� is called 
the comate operator.  
 

5.2  Terminology 
If the base of a TAS is equal to the Down-Del unary operator then the TAS is called 
an intrinsic TAS system (ITAS) otherwise it is called an extrinsic TAS system. In 
each z-radix system there is one intrinsic TAS system that describes the intrinsic 
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properties of prioritors.  When the base of a TAS is equal to the Up-Del unary 
operator, we call it the STAR TAS (STAS) system.  

When a TAS system exists in all radii it is called a global TAS and when it exists in 
some and not in the others it is called a local TAS (LTAS).  

The ITAS and STAS systems are global TAS systems. Thus the number of global 
TAS systems is 2 and the number of local TAS systems is (z!-2) where 'z' is system 
radix. The binary system has no local TAS systems at all. The properties of Local 
TAS systems serve as a selecting factor of one radix over the other.  

When the down-del operator is paired with the base of a TAS system, e.g. (∇ ,π), we 
call that pair the ancestor pair.  All the pairs of a TAS system are called the 
descendants of the ancestor pair. 

5.3 TAS Codes  
AOP identifies TAS systems by the s-code and index-code. The s-code of a 

TAS is the same as its base s-code.  For example, if the base is �4S1023� then the 
TAS s-code is �4S1023�.  When we sort all bases in alphanumerical order, each base 
will have a unique index.  The TAS index-code prefixes this index by 'TASc' where 'c' 
is a character that identifies the radix in use. For example the 4S1023 TAS has an 
index code of �TASQ7� because the �4S1023� has an alphanumerical order of '7' and 
�Q� represents quaternary system.  

5.4 TAS Systems 
Table 10 shows the TAS systems in binary system. The two TAS systems are 
TASB1 and TASB2. TASB1 is an extrinsic TAS, which generates the extrinsic 
properties between the B1 (AND) and B2 (OR) prioritors. TASB2 is an intrinsic TAS 
which generates the intrinsic properties of prioritors B1 (AND) and B2 (OR). 

Table 11 shows the ternary TAS systems. There are six TAS systems, which are 
TAST1, TAST2, TAST3, TAST4, TAST5 and TAST6. Each TAS has its own pairs. 
For example, the TAST1 TAS has 6-pairs which are (T1,T6), (T2,T4), (T3,T5), 
(T4,T2), (T5,T3), and (T6,T1). The operator listed beside each pair is the comate 
unary operator. For example, the comate for the (T3,T5) pair in TAST1 is 'T4". 
TAST1 is the STAS system and TAST6 is the ITAS system. 

In this paper, we will concentrate only on the two global TAS systems, which 
are the ITAS and STAS systems. 
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6 AOP THEOREMS  
In this paper, we will only present all the theorems that are related to AOP 

global TAS systems, which are ITAS and STAS systems.  

6.1 Terminology 
Intrinsic theorems are theorems that describe each prioritor as single entity. Such 
theorems tell us the properties of each prioritor. Extrinsic theorems describe the 
functional behavior resulted from the interactions between two prioritors. They 
describe a pair of two prioritors as a single entity.  For example, the commutation 
property of a prioritor is an intrinsic property but the distribution property of a 
prioritor is an extrinsic property because it describes the functional behavior of two 
prioritors. 

Global Theorems are theorems that hold true for all TAS systems and for all radii. 
Local Theorems are theorems that do not hold true for all TAS systems and do 
not hold true for all radii.  For example, the prioritors of the binary system have local 
properties that do not exist in other systems such as A+A─=1.  Thus, such a 
property is called a local intrinsic property.  On the other hand Aαααα  αααα─ΛΛΛΛ=αααα─ΛΛΛΛ is a 
global intrinsic property because it holds true for all prioritors and in all radii.  An 
empirical theorem is a theorem that does not have analytical proof but has an 
experimental proof (tested for specific radii and for specific TAS systems over all of 
its domain using computer software). 

AOP has a large number of theorems8, thus the process of naming each theorem is 
difficult.  Therefore, AOP categorizes theorems into types to simplify the naming 
process by using an index scheme. So, each theorem in AOP has a formula, name 
and type. The formula spells out the action of the theorem. The name identifies the 
theorem and the type classifies the theorem. When it is impossible to derive a name 
for a property from its function or action we use the type and add an index to it.  For 
example, we say "absorption-II theorem".  The "absorption' is type and "II or 2" is the 
index. The basic types used so far by AOP are static, absorption, transfer, and 
virtual.   

A theorem is said to be a static theorem if one of its sides is constant.  For example, 
A+A─=1 is a static theorem.  A theorem is said to be an absorption theorem if there 
is at least one variable in one side that does not appear on the other side.  For 
example, Aαααα (Aαααα*B)=A is an absorption theorem.  A theorem is said to be a transfer 
theorem if one of its sides contains at least one orthogonal operator and the other 
side does not contain any orthogonal operator.  For example, A  ∆α  Λα  ΛCα ( A α* 
B)=AαB is a transfer theorem because the left side contains one orthogonal operator 
and the right side does not contain any orthogonal operator. A theorem is said to be 
a virtual theorem, if the removing of one term from one side does not change the 
equality of the two sides and the same variables still exist in the equation as in the 
original expression.  For example, (ΑαΑ ─f) µ (A α B) =( AαB) is called a virtual 
theorem because the removal of the term "(ΑαΑ ─f)µ" has no impact on the equation 
                                            

8 Some of which I discovered and some is still undiscovered. 
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results and the same variables "A" and "B" remain in the equation.  If we remove "αααα 
(Aαααα*B)" form 'Aαααα (Aαααα*B)=A' we get A=A, but the variables are not the same as in the 
original expression.  A term that can be removed from an equation and still has no 
impact on the equation results is called a 'virtual term'.  

6.2 ITAS Intrinsic Theorems 
The ITAS theorems of AOP are listed in Table 1.  

Theorem 2: ITAS Theorems (19) 
Table 1: ITAS Intrinsic Theorems 
No Name Formula 

1 Del-Del Properties  (1) ∇ ∇  = ∇  
(2) ∇   ∆ = ∆ 

(3) ∆  ∆= ∇  
(4)∆∇  = ∆ 

(5) ∇ -=∇  
(6) ∆-=∆ 

(7) ∇ *=∆ 
(8) ∆*=∇  

2 Costar-Star Properties  α#-=α#  
α#=α*#   

α  #α =α* 
α*# ≠ α#* 

3 Sequential Inverse Theorem9 (f y)-=y-   f -  
4 Sequential-Star Theorem (f y)*=f* y  
5 Star-Image Theorem α*=∆  α  

6 Comparison Theorem (1) If A≤B ⇔ A  ∆ ≥ B  ∆  
(2) If A≥B ⇔ A  ∆ ≤ B  ∆ 

7 Star Relative-Priority Theorem (1) If A  α- ≥ B  α- ⇔ A  α∗ - ≤ B  α∗ -  
(2) If A  α- ≤ B  α- ⇔ A  α∗ - ≥ B  α∗ - 

8 Costar Relative-Priority Theorem (1) If A  α-≥B  α- ⇔ A  α#  α-≤ B  α#  α-  
(2) If A  α-≤B  α- ⇔ A  α#  α-≥ B  α#  α- 

9 Mean Theorem (1) A ∇  A  ∆ ≥½(z-1)  
(2) A ∆ A  ∆≤ ½(z-1)  

10 Generalized Mean Theorem (1) (AαA  α#)  −α ≥½(z-1)  
(2) (A∗α A  α#)  −α≤ ½(z-1)  

11 Priority-Star Theorem  A α*B={A if A  α-≤B  α-; A if A  α-≤B  α-} 
12 Star-Theorem  α**=α  
13 Infimum-Digit Theorem  α V= 0  α  
14 Supremum-Digit Theorem  α  Λ=(z-1)  α  
15 Inferiority Theorem  α V α A = A  
16 Superiority Theorem  α  Λ α A = α  Λ  
17 Idempotence Theorem  AαA=A  
18 Commutation Theorem  AαB=BαA  
19 Association Theorem  Aα(BαC)=(AαB) αC  

                                            
9 This is a well established theorem for 1-1 functions in the literature but rewritten using AOP notations  
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6.3 STAS Extrinsic Theorems  
Unlike Boolean and Post algebras, the number of binary operations in AOP increases 
very rapidly in the order of z!. Thus, AOP cannot provide a symbol for each 
operation. Instead, AOP uses the " symbol as a global symbol to stand for its 

consecutive operations. For example, X1αX2αX3αX4 is written as . There are 
four parameters associated with the " symbol, which are the binary operation to be 
repeated �α�, the counting index �i�, the index-starting value �i=1�, and the index end-
value �i=4� 
 
This section lists all the global extrinsic theorems of the STAS system in Table 2. 
The STAS system has the form (α,α*). Its base is equal to up-del (∆) operator.  

Theorem 21: STAS Extrinsic Theorems (12) 
Table 2: STAS Extrinsic Theorems 
No Name  Formula 
1 Distribution Theorem  Aα (Bα*C)=(AαB) α*(AαC)  
2 Absorption Theorem-I  Aα (Aα*B)=A  
3 Absorption Theorem-II  (AαB)α(Aα*C)= (AαB)  
4 Absorption Theorem-III  (AαA  α#)α(Bα*B  α#)=(AαA  α#)  
5 Star-Cyclic Theorem  (1) α  Λ=α* V  (2) α V=α*  Λ  
6 Costar-Cyclic Theorem  (1) α  Λ=α V  α# (2) α V=α  Λ  α# 
7 Static Theorem  A  ∆α  Λα  ΛΒ α A = α  Λ  
8 Transfer Theorem-I  A  ∆α  Λα  ΛCα ( A α* B)=AαB  
9 Uniform Image-Scaling (AαB)¯f= A¯f α¯f B¯f  

10 Substitution Theorem  
 

11 Inferiority Substitution  
 

12 Superiority Substitution 
 

Table 8 lists the α and α* of the (α,α*) STAS systems in the quaternary, ternary 
and binary digital systems. The first pair in Table 8 in each system corresponds to the 
(MIN, MAX) in Post algebras which are (MIN,MAX)=(Q1,Q2), (MIN,MAX)=(T1,T6) 
and (AND,OR)= (B1,B2). 

6.4 LTAS Theorems  
AOP is different from Post Algebra.  AOP has many TAS systems that cannot be 
covered in one paper.  But here, I listed two LOCAL virtual theorems, which do not 
belong to the STAS system. Table 3 lists two virtual theorems for LTAS systems of 
binary, ternary, and quaternary systems.  
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Theorem 34: LTAS theorems (2) 
Table 3: LTAS Theorems 

No Name Formula  
1 Virtual Theorem-I (ΑαΑ α? ) α!  (A α B) =( AαB) 
2 Virtual Theorem-II Α α( A  α?α!  B) =( AαB) 

For the binary system, all the virtual theorems are satisfied and reduce to the 
A+(A *B)=A+B or A*(A  +B)=A*B in Boolean algebra. For the ternary system, the 
virtual-I theorem exists in TAST4 and TAST5. Virtual-II theorem exists in TAST5.  For 
the quaternary system, the virtual-I theorem exists in TASTQH, TASTQI, TASTQM, 
and TASTQN.  Virtual-II theorem exists in TASQN.  

Post algebra did not show any theorem in MVL systems that is equivalent to 
A+(A *B)=A+B or A*(A  +B)=A*B in Boolean algebra.  So, it is a remarkable 
achievement by AOP to show that there are theorems in MVL systems that are 
equivalent to such theorems.   

The theorems of LTAS systems are very important in AOP.  They enable AOP 
to use the power behind its set of multi-operators in representing functions.   

7 AOP Orthogonal Theorems10  
 Boolean and Post algebras offer only two representations for n-variable MVL 
functions: sum-of-products and product-of-sums [4] p29-30 [9] p.95. Each 
representation requires a maximum number of (n+1)zn-1 binary operations (MIN-MAX, 
AND-OR) and a maximum number of nzn complementary functions {Cm(x) [4]}. For 
example, for a two-variable function in the ternary system we need a maximum 
number of (2+1)32-1=26 binary operations {8 MINs & 18 MAXs or 8 MAXs & 18 MINs 
[9]p.93} and 2*32=18 complementary functions.  

AOP extends and enhances the representations of MVL functions. It offers z! 
distinct representations for MVL functions instead of two representations. The 
sum-of-products and product-of-sums representations are just two representations 
out of the z! distinct representations. For example, a MVL function in the quaternary 
system can be represented by 4!=24 representations. AOP extends the 
representations of MVL functions using two theorems called �Orthogonal Theorem-
I” and �Orthogonal Theorem-II�. Both theorems extend the number of 
representations of MVL functions to z!. The z! distinct representations give designers 
more alternate choices of representing MVL functions. It also enables designers to 
select the representation which starts-off with the lowest number of prioritors just 
before entering the minimization dilemma.  

AOP enhances the notations of MVL function representations. Its notations 
allow the use of well-organized and compact formulas that handle hundreds of 
representations in high-radix systems. Before we present the orthogonal theorems of 
AOP, we will consider the following notation, terminology, and symbols.  

                                            
10 AOP has more complicated theorems to represent MVL functions other than the theorems of this 
section. 



 21 

7.1 Notations, Terminology and Definitions  
In AOP, the domain of MVL functions is treated as a vector domain with zn vectors. 
The notation f(un,...,u2,u1) is written as f(XS) where Xs=(Xsn,...,XS2,XS1) and 's' is the 
vector index in the domain. The values of the vector component XSj correspond to the 
values of the uj variables where 1≤j≤n.  
 
In AOP, some of the values in the function table are called "trivial values". A trivial 
value is the value that is equal to the supremum of the prioritor used to represent its 
function. A term is all the repeated operations carried out by the α prioritor in the 
representation. A term is called a trivial term if a trivial value appears in it. If there 
are no trivial terms in the final representation, then we call it a start-off 
representation. MRV is the most repeated value in the function table. NMRV is the 
next most repeated value in the function table.  

The following symbols are used in the statistical equations associated with the 
orthogonal theorems I&II. (1) 'λ' is the number of α's in the representation. (2) 'δ' is 
the number of α*'s in the representation. (3) 'p' is the total number of prioritors in the 
representation. (4) 't' is the number of trivial terms in the function to be represented 
(5) �τ� is the number of non-trivial terms in the equation. (6) ϕ is the number of 
orthogonal operators. 

In AOP, we face situations where we have to count the number of occurrences 
of a digit in the range set of a MVL function. The next definition defines a counting 
operator that is used to express the mathematical formulas of AOP in a well-compact 
form.  

Definition 21: Counting Operator 
 Let �A� be a subset of the integer numbers and let 'c' be an integer number. The expression 
A#c is defined as the number of occurrences of the 'c' element in the A set where "#" is called 
the counting operator.  

Example 10: On Counting Operator 
Let f(A, B)= AβB be a function in the quaternary system where β=Q8=4S1032= 
4S3310:3210:1111:0010. The expression {f(A, B)}#2 =is the number of the 
occurrences of '2' in the function range set which is '1'. For simplicity in notations, we 
will treat the function symbol 'f' under the counting operator as its range set and 
disuse the parenthesis. Thus f#0=5, f#1=7, f #2=1, f#3=3.  

7.2 Orthogonal Theorem-I  
AOP uses the orthogonal theorem-I (Theorem 37) to represent MVL 

functions. The orthogonal theorem-I requires a maximum number of (n+1)zn-1 
prioritors and a maximum number of nzn orthogonal operators. For example, a 2-
variable MVL function in the ternary system can be represented by six 
representations with a maximum number of 26 prioritors and 18 orthogonal operators 
for each representation.  

The sum-of-products and product-of-sums [4] p29-30 [9] p.95 representations 
of Post algebras are special cases of the orthogonal-I representations. Therefore, a 
Post representation requires a maximum number of (n+1)zn-1 binary operators (MINs 
and MAXs) and a maximum number of nzn complementary operators [5].  
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Theorem 37: Orthogonal Theorem-I 
Theorem 7.1 Orthogonal Theorem-I: A MVL function of n-variables, say f(xs) where 
XS=(XSn, ..., XS2, XS1), can be represented by using the (α, α*) STAS systems and the 
unary orthogonal operators as:  
                       α*:zn               α:n  
                              f(xs)= "     (f(Xm) α  "    Xsj ∆Xmj α

Λ α V
) 

                                       m=1                 j=1 

where the number of � 

1- trivial terms is                    t= F#αΛ
 

2- non-trivial terms is ��..  τ=zn-t 
3- orthogonal operators is    ϕ=nτ 
 

4- α*�s is                 δ=τ-1 
5- α�s is ����  λ=nτ-F#α V

 

6- All prioritors is    P=λ+δ=(n+1)τ-1-F#α V
 

The Post representations are a special case of orthogonal theorem-I when α=MIN for 
the sum-of-products representation and when α=MAX for the product-of-sums 
representation.  

7.3 Orthogonal Theorem-II  
AOP enhances the representations of MVL functions by the orthogonal 

theorem-II (Theorem 38). The enhancement is achieved by reducing the number of 
prioritors needed for the representations of MVL functions than the orthogonal-I 
representations by zn. This makes the orthogonal-II representations less complex 
than the orthogonal-I representations. The orthogonal theorem-II requires a 
maximum number of nZn-1 prioritors and a maximum number of nzn orthogonal 
operators. For example, a 2-variable MVL function in the ternary system can be 
represented by six representations using the orthogonal theorem-II with a maximum 
number of 17 prioritors and 18 orthogonal operators (see Example 11; notes that the 
MIN and MAX are prioritors).  

The orthogonal-II representations of AOP to MVL functions are less complex 
than Post representations by a maximum number of zn binary operations. Post 
algebra does not have an equivalent theorem to the orthogonal theorem-II.  

Theorem 38: Orthogonal Theorem-II 
Theorem 7.2 Orthogonal Theorem-II: A MVL function with n-variables, say f(xs) 
where XS=(XSn, ..., XS2, XS1), can be represented by using the (α, α*) STAS systems 
and the unary orthogonal operators as: 

                                              α*:zn    α:n 
                                      f(Xs)= "        " Xsj∆ Xmj αΛ f(Xm) 

                                                                        m=1      j=1 
Where the number of �. 
 1- trivial terms is ����..  t= F#αΛ

 
 2- non-trivial terms is �.�.  τ=zn-t 
 3- orthogonal operators is    ϕ=nτ 

4- α*�s is ������..�.δ=τ-1 
5- α�s is ��������λ=(n-1)τ 
6- All prioritors is � ��....P=λ+δ =nτ-1 
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7.4 AOP representations of MVL functions  
How AOP represents a MVL function if given a specific STAS system? In this case, 
we do the following steps: (1) Delete all entries in the function table which are equal 
to α  Λ (2) Select orthogonal theorem I or II for the representation. (3) Mark all entries 
in the function table that are equal to α  V  if orthogonal theorem-I was selected. (4) 
Transfer the function table into the selected orthogonal theorem as shown in  
Example 12 and Table 15.  
 
How AOP represents a MVL function if not given a STAS system? In this case, we do 
the following steps to get the lowest start-off representation (Definition 22). (1) 
Find the MRV and NMRV from the function table. (2) Select a prioritor from Table 8, 
say α, such that α  Λ=MRV and α  V=NMRV. (3) Delete all entries in the function table 
which are equal to the function MRV (4) Select orthogonal theorem I or II for the 
representation. (5) Mark all entries in the function table that are equal to the function 
NMRV if orthogonal theorem-I was selected. (6) Transfer the function table content 
into the selected orthogonal theorem. The marked values will not appear in the 
orthogonal-I representations because they are the infimum of α and are irrelevant to 
the orthogonal-II representation. See Example 12 and Table 15: 
 
7.4.1 Lowest Start-Off Representation 

The lowest start-off representation does not mean the minimum 
representation. Further steps have to be carried by the theorems of AOP to get a 
minimum representation.  

Definition 22: Lowest Start-Off Representation 
A representation is called the lowest start-off representation if the supremum of the prioritor 
used to represent the function is equal to its MRV and the infimum is equal to its NMRV. 
That is α  Λ=MRV, α  V=NMRV. 

7.4.2 Examples of MVL functions 
Example 11: On MVL representations by AOP 
In [9] p. 92-93 the ternary function 
example f(u,v) is represented by 
the sum-of-products in p.93. Let's 
represent the example using the 
orthogonal theorem-II of AOP. 
From H1, we get α=∧ =•=MIN, 
α*=∨ =+=MAX, and the logic-
set={e0, e1, e2}. From H2, by the 
infimum theorem α  V=e2, α*  V=e0, 
by the star-cyclic theorem αΛ =α*  

V=e0 and α*  Λ=α  V=e2. Thus f(u,v) 
can be represented in AOP by the 
orthogonal theorem-II as listed 
below. This representation has 9 
MINs and 8 MAXs compared to 18 
MINs and 8 MAXs by Post algebra. 
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Example 12: On Orthogonal Theorems-I&II 
Let f(u,v) in Example 11 be f(u,v)=uβv where β=T4=3S120=3S212:111:210 and the 
logic-set={0,1,2}. From the function table, MRV=1 and NMRV=2. Using Table 8, we 
select α=T3=3S102 since T3

  Λ=MRV and T3
 V=NMRV. Thus, the representation by 

orthogonal theorem-I is f(u,v)=( 0αu  ∆210 αv  ∆210)α*( u  ∆210 αv  ∆212) α*( u  ∆212 
αv  ∆210)α*( u  ∆212 αv  ∆212) with 8 binary operations and 8 orthogonal operators and 
no NMRV values are appearing in the representation. The representation by 
orthogonal theorem-II is f(u,v)= (u∆010  αv  ∆010)α*(u∆210  αv∆  212)α*( u∆212  
αv∆210 )α*(u∆212  αv∆212 ) with 7 binary operations and 8 orthogonal operators. See 
Table 12. These representations can be minimized using the theorems of AOP. For 
example, using the substitution theorem we reduce the last two terms and get f(u, 
v)=( 0αu  ∆210 αv  ∆210)α*( u  ∆210 αv∆  212)α*( u∆212  αv∆121 ) for the orthogonal-I 
representation and f(u, v)= (u  ∆010 αv  ∆010)α*(u  ∆210 αv∆212 )α*( u  ∆212 αv∆  121) for 
the orthogonal-II representation. Further steps are needed to reach a minimum form. 

8 AOP EXPANSION Theorems  
 AOP extends and enhances the expansions of MVL functions by two 
theorems called �Expansion Theorem-I” and �Expansion Theorem-II�. Both 
theorems extend the number of expansions of MVL functions to z!. For example, a 
MVL function in the quaternary system can be expanded by 24 expansions. The 
enhancement in expansion theorem-II is achieved by reducing the number of 
prioritors by �z�. 

8.1 Expansion Theorem-I and II 
Theorem 39: Expansion Theorem-I 
A MVL function of one variable in a z-radix digital system can be expanded by using 
the (α, α*) STAS systems and the orthogonal operators as 
 
         α*:z-1        

f(x)= "  (f(m) α X∆ m αΛ α V) 
 m=0 

 

 
Theorem 40: Expansion Theorem-II 
A MVL function of one variable in a z-radix digital system can be expanded by using 
the (α, α*) STAS systems and the orthogonal operators as:  

  α*:z-1    
f(x)= "   X∆ m αΛ f(m) 
 m=0 

 

Due to the limited space, Example 14 shows only four expansions of a quaternary 
variable out of the 24 expansions by the orthogonal theorem-I. The first expansion is 
the sum-of-products by Post algebra. Also Example 15 shows four expansions of a 
quaternary variable out of the 24 expansions by the expansion theorem-II.  
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8.2 Variables Expansion 
Example 13: On Variables Expansion I & II 
Using the expansion theorem for f(X)=X, any variable in AOP can be expanded by 
using the (α,α*) STAS systems and the orthogonal operators as:  

 

The variable expansion in Post algebra defined in axiom-3 by Epstein in (5) is a 
special case of the expansion in (I) when α=MIN and α*=MAX.  

Example 14: On Variable Expansion-I 
Using the expansion theorem-I, we can expand a quaternary variable by the following 
expansions:  

α=Q1=MIN, α*=QO=MAX  x= (1 α x-∆103) α*(2 α X-∆203) α*(X
-∆303))  

α=Q8, α*=QH  X= (0 α X-∆012)α* (X
-∆212) α*(3 α X-∆312)  

α=QD, α*=QL  X= (0 α X-∆023)α*(1 α X-∆123)α* (X
-∆323)  

α=QK, α*=Q9  X= (0 α X-∆031)α*( X
-∆131)α*(2 α X-∆231)  

Example 15: On Variable Expansion-II 
Using the expansion theorem-II, we can expand a quaternary variable by the 
following expansions:  

α=Q1, α*=QO  x= x-∆101 α*X-∆202 α* X-∆303,  α=QD, α*=QL  x= x-∆020 α* x-∆121 α* X-∆323  
α=Q8, α*=QH  x= x-∆010 α*X-∆212 α* X-∆313,  α=QK, α*=Q9  x= x-∆030 α* x-∆131 α*X-∆232  

9  AOP Image-Scaling Theorem 
9.1 Binary and Priority-assignment image operations 
The Priority-assignment image operation, denoted by the symbol ' ', operates on 
variables and on the priority-assignment of a prioritor. For example, α f means 
that this operation is to operate on the priority-assignment of the �α� prioritor not on 
the prioritor itself.  

Definition 23: Priority-assignment Image operation 
The priority-assignment image operation, denoted by �  f��, is defined as α  f = (priority-
assignment of α)  f 

The binary image operation, denoted by the symbol '══', operates on variables and 
on the prioritor itself not on its priority-assignment.  

Definition 24: The binary image operation 
The binary-image operation, denoted by α══f, is defined as α══f =f(function Table of α). 
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The binary image operation and priority-assignment image operation are different 
and not comparable when they operate on a prioritor because the first results in a 
unary operator while the second results in a binary operator.  The relation between 
the two operation is given by (AαΒ)══f=Aα══f Β=(Aα Β)  f 

Example 16: On Prioritors Images Operations 
In the quaternary system, let f=4S1302 and α=QJ=4S3012=4S3333:3210:3110:3000. 
Using the priority-assignment image operation α  f is 4S3012 4S1302=4S1203.  Note that 
�f� operated on the priority-assignment �4S3012� not on the prioritor 
�4S3333:3210:3110:3000�.   Using the binary image operation α══f 
=(4S3333:3210:3110:3000)═4S1302= 4S1111:1302:1002:1222.  Note that both results 
are completely different and incomparable.  

9.2 Uniform Image-Scaling Theorem  
 When we take the image of a binary operation using the NOT or MV-NOT 
operator in Boolean and Post algebras, we use DeMorgan's laws to break out the 
image operation. The DeMorgan's laws work only for the NOT and MV-NOT 
operators. What about if we take the image of a binary operation, say MIN, by using 
a one-to-one unary operator, say f=4S3012, other than the MV-NOT operator (see 
Example 18)? Post algebra does not provide the means in this case to break the 
image operation. AOP solves this problem by replacing DeMorgan's laws by a new 
theorem (Theorem 41) called the "uniform image-scaling (UIS) theorem" which is a 
special case from the General Image-Scaling Theorem.  

Theorem 41: Uniform Image-Scaling (UIS) Theorem 
The image of the binary operation AαB of the 'α' prioritor under a conservative unary 
operator 'f' is given by  

(AααααΒΒΒΒ)))) f====A f αααα f ΒΒΒΒ f 

9.2.1 Examples On Uniform Image-Scaling Theorem 

Example 17 shows how to break up the image of the MIN binary operator under 
the unary operator f=4S3012. Other similar results are shown in Example 21 where 
� � by default stands for the NOT (2S01) operator in the binary system and MV-NOT 
in MVL systems.  

Example 17: On Uniform Image-Scaling Theorem (QJ,4S1302) 
In the quaternary system, if we let f=4S1302 and α=QJ=4S3012=4S3333:3210:3110:3000, 
then (A 4S3012 B) 4S1302=A 4S1302 4S3012

 4S1302 B 4S1302; (A 4S3012 B) 4S1302=A 4S1302 
4S1203 B 4S1302. According to the UIS theorem, the image on the left side in �(A α 
B) f� is taken on the final result not on the priority-assignment of α, or it is taken on 
the function table of α as shown in �A α══f B�. That is (A α B)══4S1302 =(A α══4S1302 B) 
=AβB where β=(QJ=4S3333:3210:3110:3000)══4S1302= 4S1111:1302:1002:1222. On the other hand, 
the image operation on the right side is taken on the priority-assignment of α. That is 
4S3012

 4S1302=4S1203=Q9. Assume A=2 and B=3, then (2 4S3012 3)  4S1302=2 4S1302 4S1203 
3 4S1302; 3 4S1302=3 4S1203 1; 1=1.  
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Example 18: On Uniform Image-Scaling Theorem (Q1=MIN,4S3012) 
Using Table 8 and Table 14, the image of the binary operation AαB for 
α=Q1=MIN=4S0123 and f=4S3012 is (A α B) f = A f α f B f= A fβ B f where β=α f 

=α f=4S0123 4SS3012=4S2103=QF. See Table 13, which shows the function table of 
this example.  
Example 19: On Uniform Image-Scaling Theorem (Q1,4S0123) 
In the quaternary system, let f=4S0123 and α=4S0123.  

(A 4S0123 B)  4S0123= A  4S0123 4S0123
  4S0123 B  4S0123 

(A 4S0123 B)  4S0123= A  4S0123 4S3210 B  4S0123 

(A MIN B)  4S0123= A  4S0123 MAX B  4S0123  

(A MIN B)¯ = A¯ MAX B¯ using default notation where MIN=Q1 and MAX=QO in Table 8.  
Example 20: On Uniform Image-Scaling Theorem (T1,3S012) 
In the ternary system, let f=3S012 and α=3S012.  

(A 3S012 B)  3S012 =A  3S012 3S012
  3S012 B  3S012  

(A 3S012 B)  3S012=A  3S012 3S210 B  3S012 

(A MIN B)  3S012 =A  3S012 MAX B  3S012 

(A MIN B)¯ =A¯ MAX B¯ using default notation where MIN=T1 and MAX=T6 in Table 8 

9.2.2 Deriving DeMorgan's laws by AOP  
 
Example 21: On Deriving DeMorgan's Laws from UIS theorem 
Since AND  f=2S01  2S01=2S10=OR and OR  f=2S10 2S01=2S01=AND when f=2S01, 
then we obtain (A AND B)¯= A¯ OR B¯ and (A OR B)¯= A¯AND B¯ , which is DeMorgan�s 
law in Boolean algebra. Since MIN  f=MAX and MAX  f=MIN when f=∆, then we 
obtain (A MAX B)¯= A¯MIN B¯ and (A MIN B)¯= A¯ MAX B¯, which is DeMorgan�s law in 
Post algebra.  

10 AOP UNIFORM DEGENERACY 
10.1 Notations and Terminology  
The following AOP notation will be used in the following sections. In mathematics, we 
usually consider variables to be the only parameters of functions. Thus, we specify 
these variables in the function heading. For example, the f(x) notation means �x� is a 
variable parameter and the f(x,y) means �x� and �y� are variable parameters. Because 
AOP is a multi-operational algebra, we extend the notation to specify variables, 
operators and constants as parameters in the function heading and at the same 
time use sets notations to specify such parameter. For example, assume we have 
the following Boolean function G(A,B,C)= (A+B)*(A+B)+A*C+(1+C)*(B+0). In AOP, 
we write this as G(X,α,C) where X={A,B,C},α={+,*}, C={1,0}. Thus, in G(x,α,c) 
notation (1) �x� is the set of all variables used in the function. (2) �α� is the set of all 
prioritors used in the function. (3) �C� is the set of all constants used in the function. 
(4) �G� A function whose range is determined by a set of variables 'x' and a set of 
prioritors 'α' and a set of constants 'c'.  
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Definition 25: Priority functions and Priority equations  
A function or an equation is said to be a priority function or equation if and only if all of its 
binary operators are prioritors.  
 

10.2 Uniform Degeneracy of Prioritors  
 Based on the "duality" concept, in Boolean and in Post algebras, we say that 
the dual of MIN is MAX and the dual of AND is OR and vise versa. AOP extends the 
duality concept into a broader scope under the concept of "uniform degeneracy11". 
The uniform degeneracy of prioritors is defined in Definition 26. 

Definition 26: Uniform Degeneracy of Prioritors 
The uniform degeneracy of a prioritor (descendants) is defined as the image of its priority-
assignment under a conservative unary operator, say f, and is denoted by "αo fff". 
Mathematically,   where αααα¯f is the image of the priority-assignment of αααα under 
“f” NOT the image of the function table of αααα under “f” and �o fff � is called the uniform 
degeneracy operator. 
 
Example 22: On Uniform Degeneracy of Prioritors 
For example, let α=Q7=4S1023 and f=4S1023. By Definition 26, αofff = 4S1023¯

4S1023= 
4S2301=QH. Thus, we say that the uniform degeneracy of α=Q7 is QH. 

Table 14 lists all the �αofff� uniform degeneracy operations of all prioritors under 
all conservative unary operators in the quaternary, ternary and binary systems. To 
find the uniform degeneracy of a prioritor under a conservative unary operator using 
Table 14, locate the row that contains the prioritor and the column that contains the 
conservative unary operator, which is listed in a vertical direction. The intersection of 
the column and row is the prioritor number that represents the uniform degeneracy. If 
the number is in the quaternary system, then add the �Q� prefix; in the ternary system 
add the �T� prefix, in the binary system add the �B� prefix. Finally, use Table 8 to 
determine the function table of the prioritor found.  

Example 23: On Using Uniform Degeneracy Table 
The uniform degeneracy under f=4S3021 of α=QH prioritor is QH

offf=Q5 (The 
intersection is �5� and the prefix is �Q�). The uniform degeneracy under f=3S021 of 
α=T3 prioritor is T3offf=T6 (The intersection is �6� and the prefix is �T�). The uniform 
degeneracy under f=2S01 of α=B1 prioritor is B1

offf=B2. (The intersections �2� and the 
prefix is �B�).  
Example 24: On Uniform Degeneracy of Q1 and QO 
The uniform degeneracy of α=Q1 (MIN) under f=4S2301 is Q1

offf=Q8, of α=Q1 (MIN) 
under f=4S0123 is Q1

offf=QO, of α=QO (MAX) under f=4S0123 is QO
offf=Q1 and of 

α=Q1 (MIN) under f=4S1032 is Q1
offf=QH.  

                                            
11AOP can extend the number of degenerate MVL equations in a z-radix system up to z!3 by using its 
concepts of “Non-Uniform Conservative Degeneracy”.  
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Example 25: On Uniform Degeneracy of B1 (AND), B2 (OR) 
In the binary system, under f=2S01, the uniform degeneracy of the AND operator (B1) 
is the OR operator (B2) and the uniform degeneracy of the OR operator (B2) is the 
AND operator (B1). That is ANDofff=OR and ORofff=AND.  
Example 26: On Duality from AOP Degeneracy  
The duality theory is a special case of the uniform degeneracy theory of AOP. The 
dual operation in Boolean and Post algebras is the uniform degeneracy under 
the up-del “∆∆∆∆” conservative operator. For example, in the quaternary system 
f=∆=4S0123 and MIN=Q1=4S0123, thus the dual of MIN is MINofff=4S0123 4S0123= 
4S3210=QO=MAX. In the binary system f=∆=2S01, thus the dual of AND is 
ANDofff=2S01  2S01=2S10=OR.  

10.3 Uniform Degeneracy of Priority Functions  
The duality of functions in Boolean and Post algebras is extended by AOP 

under the concept of "uniform degeneracy of functions" as defined by Definition 
27.  

Definition 27: Uniform Degeneracy of functions 
The uniform degeneracy of a priority function, say G(x,α,c) , under a conservative unary 
operator, say �f�, is obtained by taking the uniform degeneracy of each prioritor in the 
function and by taking the image of each constant using the �f� conservative operator where 
the variables of the function remain unchanged. Mathematically 

G(x,αααα,C)offf =G(X,ααααofff,C f)  

 

The expression �G(x,αααα,C)offf� is read as the uniform degeneracy of the function G. 
According to Definition 27, we have to take the uniform degeneracy of each prioritor 
and take the image of each constant and leave all variables untouched. The 
statement is translated symbolically as G(X,αofff,C f). This means that the "offf " uniform 
degeneracy is to operate on all the prioritors of the set 'α' and the ' f' image operator 
is to operate on all the constants of the set 'C'.  

10.3.1 Examples on Uniform Degeneracy of Priority Functions  
 
Example 27: On Uniform Degeneracy of functions without constants 
Let g(X,α,C)=Aα(Bα*C). The �offf� uniform degeneracy of g(X,α,C) is g(X,αααα,C) offf =A 
αααα offf (Bαααα* offf C).   
Example 28: On Uniform Degeneracy of functions with constants 
Let G(X,α,C)= (A+B)*(A+B)+A*C+(1+C)*(B+0) where x={A,B,C},α={+,*}, and C={1,0}. 
Using the uniform degeneracy definition, G(A,B,C)offf=G(X,αofff,C   f)= G({A,B,C},{+,*} 
offf,{1,0}  f)= G({A,B,C},{+offf,*offf},{1 f,0  f})= (A+offf B)* offf (A+offf B)+ offf A* offf C+offf (1 f +offf 
C)* offf (B+offf 0  f).  
Example 29: On Uniform Degeneracy of functions with constants 
Let α=Q1 (MIN) in the quaternary system and let g(X,αααα,C)=Aα(2α*B). The set of all 
variables in the function is X={A, B}, the set of all constants in the function is C={2}, 
and the set of all prioritors is α={α, α*}. The �offf� uniform degeneracy of g(X,α,C) is 
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given by g(X,αααα,C)offf=A αααα offf (2 f αααα* offf B). In this example, we took the uniform 
degeneracy of each prioritor and took the image of the constant '2'. If we let 
f=4S0123, we get g(X,αααα,C) offf =A MAX (1 MIN B) or g(X,αααα,C) offf =A+(1••••B)=A∨∨∨∨  (1∧∧∧∧ B) 
using Boolean and Post algebra notations.  
Example 30: On Uniform Degeneracy of functions with constants 
Let α=Q1=MIN in the quaternary system and let g(X,α,C)=(Aα(2α*B)α(Cα*3))α*(0αC). 
The �offf� uniform degeneracy of g(X,α,C) is given by  
g(X,αααα,C) offf =(Aααααofff (2 fαααα* offf B)ααααofff (Cαααα*offf 3  f)) αααα*offf (0  fααααofffC).  
If f=4S1302, we obtain g(X,αααα,C) offf =(AQE(3QBB)QE(CQB1))QB(2QEC). Note that αofff= 
Q1

offf=4S0123 4S1302= 4S2031=QE and α*offf=QO
offf=MAXofff=4S3210 4S1302=4S1302=QB. 

Theorem 42 shows another important theorem in AOP. This theorem gives us 
another way of obtaining the uniform degeneracy without using Definition 27.  

Theorem 42: Uniform Degeneracy Equivalence Theorem 
The uniform degeneracy of a priority function, say G(x,αααα.c), under �offf� , where �f� is a 
conservative unary operator, is equivalent to taking the image of the entire function 
and the inverse image of each variable in the function. Mathematically:  

G(x,αααα,c) offf = G(x f -,αααα,c) f
 

 
 
Example 31: On Uniform Degeneracy Equivalence Theorem 
Let g(X,α,C)=Aα(Bα*C).  

G(X f-,α,C) f={A f-α(B f-α*C f-)} f  

                        =A f- f
αofff(B f- f

 α* offf C f- f
) By using the uniform image 

scaling theorem 
                        =A αofff(B α* offf C) By using f- f=∇  
                        =G(X,α,C)offf Which is the uniform 

degeneracy of �G� 
 
Example 32: On Uniform Degeneracy Equivalence Theorem with constants 
Let g(X,α,C)=Aα(2α*C).  

G(X f-
,α,C) f

={A f-
α(2α*C f-

)} f
 Note that operators and constants are not 

affected. 
                        =A f- f

α
offf

(2 f
 α*

 offf
 C f- f

) By using the uniform image scaling theorem 
                        =A α

offf
(2 f

 α*
 offf

 C) By using f -  f=∇  
                        =G(X,α,C)

offf
 Which is the uniform degeneracy of �G� 

 

10.4 Uniform Degeneracy of Priority Equations  
The �duality� theory in Boolean and in Post algebras states that out of every 

equation we can generate one equation, called the �dual equation�, with the same 
variables but with different operators and constants.  For example, in Boolean 
algebra, the dual of an equation is generated from an equation by substituting an 
AND for OR, an OR for AND, 0 for 1 and 1 for 0.  AOP extends the duality theory 
by its degeneracy theory. AOP states that we can generate z! equations from any 
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given equation with the same variables but with different operators and constants.  
Each generated equation is called a �child-equation� or �descendants� and the 
original equation is called the �parent-equation�. For example, we can generate 24 
equations from a MVL equation in the quaternary system by AOP (see Example 34) 
but on the other hand we can generate only two equations by Post algebra. AOP in 
this example extends the number of equations to 24 equations 12(1). Theorem 43 
�Equations Uniform Degeneracy Theorem� is the mathematical statement of AOP 
degeneracy of equations.  

Theorem 43: Equations Uniform Degeneracy Theorem 
The uniform degeneracy of both sides of a priority equation in a z-radix digital 
system are equal and the number of uniformly degenerate equations is equal to z!. 
That is, if G(x,c,αααα)=H(x,c,αααα) then G(x,c,αααα)offf = H(x,c,αααα)offf  

Example 33: On Uniform Degeneracy of A+(B+1)=1 
In Boolean algebra the dual of A+(B+1)=1 is A•••• (B••••0)=0. In AOP, the uniform 
degeneracy of A+(B+1)=1 under the unary f=2S01 (NOT) is �A+offf(B+offf 1 f)=1 f �. 
Using Table 8 and Table 14, + offf =B2

 offf =B1=AND=•  and 1  f =0, we get A•••• (B••••0)=0, 
which is the same result obtained by the dual operation.  
Example 34: On Uniform Degeneracy of Equations with constants 
In the quaternary system, let α=Q1 =MIN. The uniform degeneracy of the 2α 
(Bα*C)=(2αB) α*(2αC) MVL equation is given by 2  f ααααofff(Bαααα*offfC)=( 2  f ααααofff B) 
αααα*offf(2  f ααααofffC). If f=4S2301, then we obtain 3Q8(BQHC)=( 3Q8B)QH(3Q8C). Note that the 
Q8 and QH form a STAS system that satisfies the distribution theorem. Also, note that 
αofff=Q1

offf=4S0123 4S2301=4S1032=Q8 and α*offf=QO
offf= 

MAXofff=4S3210 4S2301=4S2301=QH. 
Example 35: On Uniform Degeneracy of Distribution Theorem for z=4 
Given this parent-equation "A∧ (B∨ C)=(A∧ B)∨ (A∧ C)" in Post algebra notation, give 
all the 24 degenerate equations (child-equations) in the quaternary system where 
∧ =MIN and ∨ =MAX. Using AOP notation, we can express A∧∧∧∧ (B∨∨∨∨ C)=(A∧∧∧∧ B)∨∨∨∨ (A∧∧∧∧ C) as 
Aα1(B αOC)=(A α1B)αO(A α1C) where ∧ =MIN=Q1 , ∨ =MAX= QO. The 24 degenerate 
equations are listed in Table 15. The index of each α represents the prioritor number 
as listed in Table 9. For example, α7=Q7, αM=QM �etc. Note that the 24 uniform 
degeneracy operators are obtained directly from Table 14 by picking all the prioritors 
in a row. For example, for the z! degeneracy forms of Q1 we pick its row in Table 14 
which reads "OIMCGA-NHK6E4-LBJ582-F9D371" and the same for QO which reads 
"123456-789ABC-DEFGHI-JKLMNO". Note that the first equation is the dual of the 
given equation in Post algebra. This shows that the dual operation in Boolean and 
Post algebras is equivalent to the uniform degeneracy under the �∆� operator. Also, 
note that equation No 24 is equal to the given equation, because the uniform 
degeneracy of any equation under the �∇ � operator is equal to the equation itself. 

                                            
12 The main reason for not adapting the same "duality" term is because duality implies "two" while 
uniform degeneracy implies two or more.  
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11 Design Examples 
In this section, I will present two design examples using the traditional operators 
and using AOP operators and then compare the design results.  

11.1 Design of Ternary Multiplication Operation 
The major operations in our lives are the basic arithmetic operations: addition, 
subtraction, division and multiplication. In this example, I will provide different designs 
for the multiplication operation in ternary system using AOP and Post algebras 
and then compare the design results.  The function table for the ternary 
multiplication operation using s-code notation of AOP is 3S120:210:000. 

11.1.1 Ternary Multiplier Design Using Post algebra 
Example 36: Ternary Multiplier Design using Post algebra 
Post algebra uses traditional operators MIN, 
MAX, MV-NOT, C0(x), C1(x) and C2(x). Using 
Post algebra notation and its representation of 
functions, we get the following "sum-of-products" 
equation (where:*=Min, +=MAX) A*B= (1* C1(A)* 
C1(B) )+ ( C1(A)*C2(B) )+ ( C2(A)* C1(B) )+ (1* 
C2(A)*C2(B) )  
This Post algebra representation uses 9 binary 
operators (6 MIN, 3 MAX), and 8 unary operators 
(complementary functions). The corresponding 
circuit for this equation is shown in Figure 1. The 
"product-of-sums" representation uses 15 binary 
operators (9 MIN, 6 MAX), and 14 unary 
operators (complementary functions). 

 
Figure 1: Ternary Multiplier By Post 

algebra 

11.1.2 Ternary Multiplier Design Using AOP Orthogonal Theorem-I 

Before we starts the design of multiplier in AOP, here are AOP operators for ternary 
system. 

The multi-operations used by AOP in the ternary system 

1. Conservative unary operators T1, T2, T3, T4, T5 and T6. (see Table 8) 
2. Orthogonal operators: 3Ω001, 3Ω002, 3Ω010, 3Ω012, 3Ω020, 3Ω021, 3Ω101, 3Ω102, 

3Ω110, 3Ω112, 3Ω120, 3Ω121, 3Ω201, 2Ω202, 3Ω210, 3Ω212, 3Ω220, 3Ω221 
3. Prioritors: T1, T2, T3, T4, T5 and T6. (see Table 8) 

 
In ternary system, AOP has a total of 30 operations: 24 are unary operations (out of 
33=27 unary operations) and 6 are binary operations (out of 332=19,863 binary 
operations), which are its prioritors. The traditional binary operators by AOP notations 
are T1 (MIN), T6 (MAX) and for unary operators are T1 (MV-NOT), T6 (identity 
operator), 3Ω002 for C0(x), 3Ω102 for C1(x) and 3Ω202 for C2(x).  
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Example 37: Design using AOP Orthogonal Theorem-I 
The orthogonal theorem-I is similar in format to Post representations except it is 
generalized to cover all the binary and unary operations of AOP. The MRV (most 
repeated value) in this table (3S120:210:000) is �0�. Thus we select a prioritor whose 
supremum-digit is equal to zero. The NMRV (next most repeated value) in this table 
(3S120:210:000) is �1� and �2�. Since we have two values for NMRV, we may select a 
prioritor with '2' infimum-digit or with '1' infimum-digit.  
The prioritor with the 1-infimum digit and 0-
supremum digit is T2. Thus, we have α=T2, 
α  ∧ =0, α ∨ =1, α*=T4. According to this, one of 
the best STAS systems to represent this function 
which will start-off with the lowest-representation 
(not minimum) is (T2,T4).  
On the other hand, the prioritor with 0-supremum 
digit and 2-infimum digit is T1 (MIN).  

 
Figure 2: Ternary Multiplier By AOP 

Orthogonal-I 

Thus, α =T1, α  ∧ =0, α ∨ =2, α*=T6 (MAX). According to this, one of the best STAS 
systems to represent this function which will start-off with the lowest-representation 
(not minimum) is (T1,T6).  Let's just use the (T1,T6) STAS system. By substituting in 
orthogonal theorem-I of AOP we get  

A*B= (1α A∆ 102 α B∆ 102) α*( A∆ 102 α B∆ 202)α*( A∆ 202 α B∆ 102)α*(1α A∆ 202 α B∆ 202) 

Using AOP short-notation13 we get 

A*B= (1α A102 α B102)α*( A102 α B202)α*( A202 α B102)α*(1α A202 α B202) 
Note that this representation by AOP for this specific example is the same as of Post 
algebra. It uses 6 T1 (MIN) and 3 T6 (MAX). The corresponding circuit for this 
equation is shown in Figure 2 using AOP notations for circuits.  
 
11.1.3 Ternary Multiplier Design Using AOP Orthogonal Theorem-II 
 
Example 38: Design using AOP Orthogonal Theorem-II 
We will use the same STAS system obtained by orthogonal theorem-I, but we 
substitute in orthogonal theorem-II to get the following equation: 

A*B= (A ∆101 α B∆ 101)α*(A∆ 102α B∆ 202)α*(A∆ 202 αB∆1 02)α*(A ∆ 201αB∆ 201) 

Using AOP short-notations we get  

A*B= (A101 α B101)α*(A102α B202)α*(A202 αB102)α*(A201 α B201) 

                                            
13 Where " ∆ " operator is deleted and only left three digits. 
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This representation is different from Post algebra 
representation and AOP orthogonal-I 
representation. It uses 4 T1 (MIN) and 3 T6 (MAX). 
The corresponding circuit for this equation is shown 
in Figure 3. 
  

Figure 3: Ternary Multiplier By AOP 
Orthogonal-II 

11.1.4 Ternary Multiplier Using AOP multi-operational set of basic 
operators 

If we were to think of a different circuit for the above example, other than the one 
provided by Post algebra representation, then we would find it is impossible to use 
the MIN, MAX and MV-NOT to design such a circuit. Even the Post algebra 
representation used the complementary functions to get the job done. 

Example 39: Using AOP multi-operational set of basic operators 

 
Figure 4: Ternary Multiplier By Multi-

Operation set of AOP  

Table-14 

No αααα ββββ µµµµ  "f" "Y"  

1 T3 T3 T5 T4 T4 

2 T1 T1 T2 T4 T4 

3 T1 T4 T2 T4 T3 

Consider the circuit of Figure 4, which is drawn 
using AOP symbols for digital circuits. This circuit 
contains three prioritors labeled α, β, and µ and 
two conservative unary operators labeled �f� and 
�y� and it represents the ternary multiplication 
operation A*B= (AαΒ f)µ (Α yβΒ) 

A solution to this circuit, based on AOP multi-
operators set, was carried out and gave 13 
distinct circuits. A few are presented in Table-14 
to the right.  In comparison to the previous 
circuits, this circuit uses three prioritors (like 
saying 3 MIN) and two conservative unary 
operators (like saying 2 complementary functions 
or two orthogonal operators). By using AOP 
theorems, we obtain A*B= (AµΒ)α(ΑαΒ)  f  where 
α=Τ1, µ=Τ2, and f=T4. This reduces the circuit 
to two binary operators and one unary 
operator.  

4 T4 T1 T2 T4 T4 

 
11.1.5 Design Comparison  
Table 4 shows a summary of all designs obtained by AOP and by Post algebra.  For 
the sum-of-products, AOP cuts the binary operators using its multi-operations by 66% 
and the unary operators by 87.5%. For the products-of-sum, AOP cuts the binary 
operators using its multi-operations by 80% and the unary operators by 92.85%. 
The use of multi-operators of AOP gave us the highest reduction. So, from an 
engineering point of view, we would choose the design of Example 39 because it is 
less complex, has low power consumption, has less propagation delay, has higher 
speed, and uses less chip space than the other designs. From a managerial point of 
view, we would choose the design of Example 39 because it is more economical in 
terms of cost.  
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Table 4: Design-I Statistics and Reduction Percentages 
  Multiplications Operations 
 Design Methods By Sum-of-Products By Product-of-Sums 
 By 9 8 15 14 
No. AOP Prioritors Binary Unary Binary Unary 
1 Orthogonal-I 9 8 9 8 
 Reduction 0% 0% 40% 42.85% 

2 Orthogonal-II 7 8 7 8 
 Reduction 22.22% 0% 53.33% 42.85% 

3 Multi-Operational  3 1 3 1 
 Reduction 66.66% 87.5% 80% 92.85% 

Let's take a few of the solutions as shown in Table-14 above and discus them. In 
entry �1�, we can use T3, and T5 prioritors and T4 conservative operator. Entry 2-1 
shows another configuration. It uses T1 and T2 prioritors and T4 conservative 
operator. This entry shows how T2 and T4 cooperate with the traditional operator T1 
to get the job done. The same can be said for the other entries.  

It is impossible to design the circuit of Figure 4 using the traditional operators of Post 
algebra. Thus, an engineer who relies on Post representations and has a solid 
faith in its traditional operators will never come up with such a circuit and will 
have only the circuit we obtained in design of Example 36 which is more 
complex.  

11.2 One More Design of 3S201:001:111 operation 
11.2.1 Design of 3S201:001:111 Using Post algebra 
Assume we are given a two-variable 
function with a function table given by s-
code as λ=3S201:001:111 (shown to 
right). First we will represent the function 
using Post algebra and then using AOP. 

AλλλλB 0 1 2 
0 1 1 1 
1 1 0 0 
2 1 0 2  

Example 40: Design of 3S201:001:111 Using Operation using Post algebra 
Assume we are given a two-variable function F(A,B) as shown. Using Post algebra 
notation we get the following representation (sum-of-products) F(A,B)= (1* C0(A)* C0(B) )+ 
(1* C0(A)* C1(B) )+ (1* C0(A)* C2(B) )+ (1* C1(A)* C0(B) )+ (1* C2(A)* C0(B) )+ (C2(A)* C2(B) ) This 
representation uses 16 binary operations (11 MIN and 5 MAX) and 12 unary 
operations.  
If we use the product-of sums we get the following: F(A,B)= (1+ J0(A)+ J0(B) )* (1+ J0(A)+ 
J1(B))* (1+J0(A)+J2(B) )* (1+J1(A)+J0(B) )* (J1(A)+ J1(B) )* (J1(A)+ J2(B) )*(1+J2(A)+ J0(B))*(J2(A)+ 
J1(B)) 
This product-of-sums representation uses 20 binary operations (13 MAX and 7 MIN) 
and 16 unary operations.  
11.2.2 Design of 3S201:001:111 Using AOP Orthogonal theorem-I 

For any function, Post algebra has no choices except to represent the function by 
MIN, MAX and complementary functions. But this is different in AOP. Since AOP has 
multiple operations, it does the following: it searches for the best STAS set of 
prioritors and then uses its orthogonal theorems to represent the function. In ternary 
multiplication design, AOP selected (T1,T6) and (T2,T4) as the best STAS systems 
and we went on and used (T1,T6) for comparison reasons with Post algebra. But 
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note the difference in this example, here AOP selects one STAS system based on 
the function to be represented.  

Example 41: Design of 3S201:001:111 Using AOP Orthogonal theorem-I 
The MRV (most repeated value) in the function table (3S201:001:111) of this function 
is �1�, thus we select a prioritor whose supremum-digit is equal to one. The NMRV 
(next most repeated value) in this table is �0�, thus we select a prioritor with an 
infimum-digit equal to �0�. The prioritor with 1-supremum digit and 0-infimum digit is 
T4. Thus αααα=T4, αααα  ∧  =1, αααα ∨ =0, and αααα*=T2. The best STAS system to represent this 
function which will start-off with the lowest representation (not minimum) is (T4,T2). 
By substituting in AOP orthogonal theorem-I we get: 

F(A,B)=(0αA ∆ 110αB ∆ 110)α*(0αA ∆ 110αB ∆ 210)α(0αA ∆ 210αB ∆ 110)α(2αA ∆ 210 αB ∆ 210)  

Since 0 is the infimum digit of αααα, then using the infimum-theorem, we modify the first 
three terms and get 

F(A,B)= (A∆ 110 α B∆ 110)α*(A∆ 110 α B∆ 210)α*(A∆ 210 α B∆ 110)α*(2α A ∆  210αB ∆  210) 

Using AOP short-notations we get 
 

F(A,B)= (A110 α B110)α*(A110 α B210)α*(A210 α B110)α*(2α A210αB210)  

This representation uses 5 T4s, 3 T3s, and 8 orthogonal operators. That is a total of 
8 prioritors (8 binary operations) and 8 orthogonal operators. However, the Post 
algebra representation for the same function by sum-of-products used 16 binary 
operations and 12 complementary functions and by product-of-sums it used 20 
binary operations and 16 unary operations. The difference between the 
representations of AOP and Post algebra is 8 binary operations plus 4 unary 
operations for sum-of-products and 12 binary operation plus 8 unary 
operations for product-of-sums representation. This shows the expressive 
power of AOP over Post algebra.  

11.2.3 Design of 3S201:001:111 Using AOP Orthogonal theorem-II 
 
Example 42: Design of 3S201:001:111 Using AOP Orthogonal theorem-II 
We use the same STAS system obtained by orthogonal theorem-I, but we substitute 
in orthogonal theorem-II to get the following. 

F(A,B)= (A ∆ 110α B ∆ 110)α*(A ∆ 110 α B ∆ 210)α*(A ∆ 210 α B ∆ 110)α*(A ∆ 212 α B ∆ 212)  

Using AOP short-notations 

F(A,B)= (A110α B110)α*(A110 α B210)α*(A210 α B110)α*(A212 α B212)  

This representation uses 4 T4s and 3 T2s. That is a total of 7 binary operations and 8 
orthogonal operators.   

11.2.4 Design of 3S201:001:111 Using AOP multi-operators set  
Example 43: Design of 3S201:001:111 Using AOP multi-operators set  
Using the multi-operators set of AOP, we can design this example by 3 binary 
operators and 2 unary operators. A solution to this example using three prioritors and 
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two unary operators is f(A,B)= (A f αΒ)λ(Α µΒ )  f  where α=Τ2, µ=Τ1 , λ=T3, and 
f=T5. This shows how AOP reduces circuit complexity of MVL circuits. Using 
AOP theorems, we can go further and reduce the equation to f(A,B)= (AαΒ)  f  where 
α=T1 and f=T5.  Compare this design (1 binary operator and 1 unary operator) to 
Post representations (16 binary operations & 12 unary operations)! 

11.2.5 Design comparison 
Table 5 shows a summary of all designs obtained by AOP and by Post algebra.  For 
the sum-of-products, AOP cuts the binary operators using its multi-operations by 85% 
and the unary operators by 93.5%. For the products-of-sum, AOP cuts the binary 
operators using its multi-operations by 93.75% and the unary operators by 81.25%.   
Table 5: Design-II Statistics and Reduction Percentages 
  3S201:001:111 Operation 

 Design Methods By Sum-of-Products By Products-of-Sums 
 By 20 16 16 12 

No AOP Prioritors Binary Unary Binary Unary 
1 AOP Orthogonal-I 8 8 8 8 
 Reduction 60% 50% 50% 33.33% 

2 AOP Orthogonal-II 7 8 7 8 
 Reduction 65% 50% 56.62% 33.33% 

3 AOP multi-prioritors  3 1 1 1 
 Reduction 85% 93.75% 93.75% 81.25 

12 Deriving Other Algebras From AOP14 
Boolean, Kleenean and Post algebra can be derived from AOP by (1) replacing the 
α prioritor by the AND or MIN and the α* prioritor by the OR or MAX operator or vise 
versa; (2) replacing any orthogonal or unary operator by NOT or MV-NOT; (3) 
replacing any conservative unary operation by the NOT or MV-NOT operator; (4) 
Replacing 'z' by '2' in statistical theorems for Boolean algebra. (5) Using MIN Λ =0 
and MAX Λ =z-1, MIN  V=z-1 and MAX V=0 for Post algebra; and (5) replacing 
∆m0(z-1) by Cm and ∆m(z-1)0 by Jm, where Jm(X)={0 if X=m, z-1 otherwise} 
Cm(X)={z-1 if X=m, 0 otherwise}.  See next section for derivation of Kleene�s laws.  

12.1.1 Deriving the Kleene's Laws from the Absorption Theorem III   

The Kleene's laws are: (1) (A•A¯)• (B∨ B¯)= (A•A¯) and (2) (A•A¯)∨  (B∨ B¯)= (B∨ B¯). 
The '• ' operator in this law represents the MIN operator and '∨ ' represents the MAX 
operator. The DnDel ∇∇∇∇  prioritor in AOP corresponds to the MAX operator and the 
UpDel prioritor ∆ corresponds to the MIN operator.  

Kleene's laws are: (1) (A•A¯)• (B∨ B¯)= (A•A¯) and (2) (A•A¯)∨  (B∨ B¯)= (B∨ B¯). 
The '• ' operator in this law represents the MIN operator and '∨ ' represents the MAX 
operator. The DnDel prioritor �∇∇∇∇ ” in AOP corresponds to the MAX operator and the 
UpDel prioritor �∆∆∆∆� corresponds to the MIN operator. 
                                            
14 Visit my web site http://gtode.users3.50megs.com 
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Deriving the First Law    
(AαA  α#)α(Bα*B  α#)=(AαA  α#) Absorption theorem-III  
(A•A  •  #)• (B•*B  •  #)=(A•A  •  #) Letting α=•   
(A•A  •  #)• (B∨ B  •  #)=(A•A  •  #) Since •=∆, then •*=∆*=∇ =∨   
(A•A  ∆)• (B∨ B  ∆)=(A•A  ∆) Since •=∆, then  

•#=∆#=∆-∆ *=∆∇  =∆  
(A•  A¯ )• (B∨  B¯)=(A•A¯) Since the bar '¯' in Boolean, Post and 

Kleenean algebras corresponds to ∆ 
operator in AOP. Q.E.D.  

Deriving the Second Law    
(AαA  α#)α(Bα*B  α#)=(AαA  α#) Absorption theorem-III  
(A∨ A∨  #)∨  (B∨ *B∨  #)=(A∨ A∨  #) Letting α=∨   
(A∨ A∨  #)∨  (B•B∨  #)=(A∨ A∨  #) Since ∨ =∇ , then ∨ *=∇ *=∆=•   
(A∨ A  ∆)∨  (B•B  ∆)=(A∨ A  ∆) Since ∨ =∆, then ∨ #=∇ #= 

∇ -∇ *=∇   ∆=∆  
(A∨  A¯)∨  (B•  B¯ )=(A∨  A¯ ) Since the bar '¯' in Boolean, Post 

algebra and Kleenean algebras 
corresponds to ∆ operator in AOP.  

(B•  B¯ )∨ (A∨  A¯) =(A∨  A¯ ) Since ∨  is a commutative operator we re-
order the terms on the left side  

(A•  A¯ )∨ (B∨  B¯) =(B∨  B¯) By letting A=B and B=A which does not 
change the equation. This is Kleene's 
second law. Q.E.D.  

13  AOP Versus Boolean and Post algebras 
13.1 AOP Versus Boolean Algebra 
All results obtained for the binary system by AOP are identical to that of Boolean 
algebra. There is no difference15 between these two algebras at the binary system 
level.  However, they are different for non-binary systems where Boolean algebra 
does not work for non-binary systems but AOP does. Also, we can derive Boolean 
algebra from AOP but we cannot derive AOP from Boolean algebra 

There is a major difference between AOP and Boolean algebra in terms of concepts. 
Boolean algebra relies on "logic" concept. This concept is limited to 'true' and 'false'. 
It sees our world as a black and white world and it ignores the various colors of our 
world. On the other hand, AOP uses the priority concept, which is more global and 
more comprehensive concept than logic concept. The priority concept sees our world 
as a flux of events, which can be processed based on a priority-scheme that can be 
programmed in various ways to adjust to any phenomena in our world.  

13.2 AOP Versus Post algebra 
There are similarities and differences between AOP and Post algebras. The 
differences between AOP and Post algebra prove that AOP is not same as Post 
algebra and because of these differences we cannot derive AOP from Post algebra. 
On the other hand, we can derive Post algebra from AOP. The differences between 

                                            
15 The general degeneracy theory expands the duality concept to include all the operators of the 
binary system. 
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AOP and Post algebra exist on the following levels: operators, theorems, and 
concepts. 

13.2.1 Operators Differences 

The design of a MVL digital circuit in AOP is achieved by composing prioritors and 
unary operators into various configurations. AOP has a huge number of unary and 
binary operators. For example, it has 24 prioritors in the quaternary system. Post 
algebra is incapable of handling many of these operators.  For example, the following 
design of the ternary multiplication16 by AOP is composed from three prioritors 
labeled α, β, and µ with two conservative unary operators labeled �f� and �y� and it is 
written as A*B=(AαΒ f)µ(Α y β Β). There are various prioritors and conservative 
operators that can compose this circuit. For example, α=Τ1, β=Τ4, µ=Τ2, f=T4 and 
Y=T3. Post algebra cannot work with this equation because of the following facts: T1 
and T4 do not satisfy Post algebra's axioms. Also, T1 & T2 do not satisfy Post 
algebra's axioms.  The conservative operators T4 and T3 are not the same as MV-
NOT, and thus DeMorgan's laws cannot be used. On the other hand, AOP simplifies 
this circuit by reducing the number of conservative operators to one instead of two: 
A*B=(AµΒ)α(ΑαΒ)  f where α=Τ1, µ=Τ2, and f=T4. It is obvious that Post algebra 
cannot handle this equation and get this reduction. 

In summary, the operators domain of AOP is different from that of Post algebra and 
the operators domain of Post algebra is always a subset of the operators domain of 
AOP. So, Post algebra is a special case of AOP. This is like saying, the variables 
domain of Post algebra is different from that of Boolean algebra and the variables 
domain of Boolean algebra is always a subset of the variables domain of Post 
algebra. So, Boolean algebra cannot work for the entire variable domain of Post 
algebra. In a similar way, we say Post algebra cannot work for the entire operators 
domain of AOP. 

13.2.2 Theorems Differences 

Due to the large domain of AOP operators, it is natural to have theorems for those 
operators in AOP domain that do not exist in Post algebra Domain. Here are the 
major theorems of AOP that do not exist in Post algebra and cannot be derived 
from Post algebra. 

 AOP Uniform Image-Scaling Theorem 
 AOP Orthogonal Theorem-II 
 AOP Local theorems: ex. Virtual theorems 
 AOP Uniform Degeneracy theorems 
 AOP non-uniform Degeneracy & Image-Scaling Theorem17 

 

AOP Uniform Image-Scaling (UIS) Theorem is one of the most powerful theorems in 
AOP and it replaces DeMorgan's Laws. The UIS theorem simply breaks the image of 
binary operations under any conservative unary operator into three components as 
(AαB)¯f=A¯f α¯f B¯f where "f" is a conservative operator, 'α' is a prioritor and the 

                                            
16 See design section  
17 AOP non-uniform Image-Scaling Theorem and AOP non-uniform Degeneracy Theorem are 
completely beyond the scope of this paper. 
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image operation acting on 'α' is applied to its priority-assignment. This break up is 
useful when this binary operation exist in equations that need to be simplified or 
minimized. Post algebra does not have a similar theorem that operates for any image 
operation done by a one-to-one function. If we use functional notation in 
mathematics, which is not a good practice, we would write this theorem as 
f(AαB)=f(A) f(α) f(B). 

AOP Orthogonal Theorem-II does not exist in Post algebra and cannot be derived 
from Post algebra because its orthogonal operators do not satisfy Post algebra 
conditions of "complementation functions". Also, this theorem has better 
representations to MVL functions than the Post representations. This theorem also 
offers z! representations for any function. 

AOP Local theorems help us determine which radix is best and can serve us better 
than other radices. Post algebra does not have local theorems for systems. Take the 
virtual theorem: Aα(A¯f β B)=AαΒ,  where α=T1, β=T2, and f=T4 in ternary system. 
This theorem does no exist in Post algebra. Even though this theorem exists in 
Boolean algebra, in the form A+(A¯* B)=A+B or A*(A¯ +B)=A*B, Post algebra could 
not inherit this theorem but AOP did.  

AOP Uniform Degeneracy theorem is also one of the most powerful theorems in AOP 
and it replaces the concepts of duality in Post algebra. Duality means that a MVL 
equation can have two different forms with different operators and constants but with 
the same variables. AOP uniform degeneracy theorem states that every MVL 
equation can have Z! different forms with different operators and constants but with 
the same variables. Unlike AOP, Post algebra follows the same steps of Boolean 
algebra and sates that a MVL equation or function has two different forms.  

13.2.3 Concepts Differences 

Due to the limitations imposed by logic concept on our world, researchers tried to find 
middle states between these two states ('true' and 'false') and developed the term 
"Multiple-Valued Logic" meaning a logic with many logic-values. What are these 
logical values in the world of logic? Are they 'true', 'false', 'half-true', 'half-false' � 
etc.? Based on multiple-logical values, MVL views our world as a black and white but 
with different degrees. Post algebra picks up on this term and provides a 
mathematical tool to work with multiple-valued logic systems based on its axioms. 
The algebra does not have a natural concept, as the case in Boolean algebra or 
AOP, to derive its operators and theorems from. On the other hand, AOP is an 
algebra that has a solid natural concept from which AOP derived its operators and 
theorems. By the priority concept, AOP was able to discover many facts about MVL 
systems that Post algebra could not do. For example, AOP discovered  

 that every z-radix system has a basic set of operators called prioritors whose 
number depends on system radix and is given by z!.  

 that any MVL equation can have z! distinct forms.  
 there exist z! representations for any MVL functions.  
 there exist z! expansions for any MVL functions.  
 the image-Scaling theorem to replace DeMorgan's Laws 
 absorptions theorem-III to replace Kleene's laws  
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The priority concept is a universal and global concept that AOP did not found, 
designed or create but used as a natural resource to analyze, build and design 
digital systems. If God implemented this concept in all of his creations, then why not 
use it in man-made machines?  

14  Conclusion and Expectations 
AOP is characterized by its insights and the simplicity of its concepts, notations, 

and mathematical operations. It is a multi-valued multi-operational switching algebra 
and it is a generalization to the formal generalizations of binary and multi-valued 
switching algebras. We have shown that AOP in a z-radix system has z! binary 
operations called prioritors, has z! conservative unary operators and has z2(z-1) 
unary orthogonal operators. Further, we have shown: (1) the development of AOP 
from the priority concept and principle; (2) the TAS systems of AOP; (3) the intrinsic 
and extrinsic theorems AOP; (4) the advanced theorems of AOP: the image-scaling 
theorem, uniform degeneracy theorem, orthogonal theorem Ι, orthogonal theorem ΙΙ , 
expansion theorem Ι, expansion theorem ΙΙ;  (5) (6) the proofs of the basic and 
advanced theorems of AOP; (4) the prioritors of the binary, ternary, and quaternary 
systems; (5) that Boolean and Post algebras are special cases of AOP.  

Furthermore, we have shown: (1) how the uniform degeneracy theory of AOP 
extended the duality theory used by Boolean and Post algebras; (2) how a MVL 
equation can be degenerated into z! equations; (3) how the uniform degeneracy 
operation replaced the "dual" operation used by Boolean and Post algebras; (4) how 
the orthogonal theorems I & II of AOP extended the representations of MVL functions 
from two representations (sum-of-products and product-of-sums) to z! 
representations; (5) how the expansions theorems I&II of AOP extended the 
expansion of MVL functions from two expansions to z! expansions; (6) how the 
image-scaling theorem of AOP replaced DeMorgan's laws; (7) how the absorption 
theorem-III  of AOP replaced Kleene's laws; (8) how Boolean, Post algebra and 
Kleenean algebras are special cases of AOP; (9) how AOP reduces MVL circuits 
complexity  

Multiple-Operational Logic (MOL) is a new area that uses multiple-
operators from unary and binary operators to design digital circuits. It is aimed 
at introducing, into logical systems, a variety of new operators that will make 
design more flexible than would be using just the MVL traditional operators.  
AOP is just a starting point in this field. AOP opens a new wide area for research.  
The large number of prioritors in various radii needs to be investigated more in terms 
of their use in digital circuits design. If researchers get interested in this field, then 
they can work toward the means that will develop the concepts of this field as they 
did for the field of MVL.  
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15  Tables 
Table 6: Conservative Unary Operators 
Binary System Conservative Unary Operators  

Unary List By S-code List By B's Code Significant 
No αααα  αααα  αααα-  αααα*  αααα#  αααα  αααα-  αααα*  αααα#  MSD LSD 

Name, 
Function 

1  B1  2S01  2S01  2S10  2S01  B1  B1  B2  B1  0  1  NOT, 1-complement  
2  B2  2S10  2S10  2S01  2S01  B2  B2  B1  B1  1  0  Identity, 0-Complement  

AND=B1=∆∆∆∆, OR=B2=∇∇∇∇ , NOT=∆∆∆∆=2S01, ∆∆∆∆=2S01, ∇∇∇∇ =2S10  
Ternary System Conservative Unary Operators  

Unary  List By S-code List By T's Code  Significant 
No αααα  αααα  αααα-  αααα*  αααα#  αααα  αααα-  αααα*  αααα#  MSD LSD 

Name, 
Function  

1  T1  3S012 3S012 3S210 3S012 T1  T1  T6  T1  0  2  MV-NOT, 2-complment  
2  T2  3S021 3S102 3S120 3S201 T2  T3  T4  T5  0  1  Successor/up 
3  T3  3S102 3S021 3S201 3S120 T3  T2  T5  T4  1  2  .  
4  T4  3S120 3S120 3S021 3S201 T4  T4  T2  T5  1  0  0-complement  
5  T5  3S201 3S201 3S102 3S120 T5  T5  T3  T4  2  1  1-complement  
6  T6  3S210 3S210 3S012 3S012 T6  T6  T1  T1  2  0  Identity  

MIN=T1=∆∆∆∆, MAX=T6 =∇∇∇∇ , MV-NOT=∆∆∆∆=3S012, ∆∆∆∆=3S012, ∇∇∇∇ =3S210  
Quaternary System Conservative Unary Operators  

Unary  List By S-code List By Q's Code Significant 
No αααα  αααα  αααα-  αααα*  αααα#  αααα  αααα-  αααα*  αααα#  MSD LSD 

Name, 
Function  

1  Q1  4S0123  4S0123  4S3210  4S0123  Q1  Q1  QO  Q1  0  3  MV-NOT, 3-Complement 
2  Q2  4S0132  4S1023  4S2310  4S1032  Q2  Q7  QI  Q8  0  2  .  
3  Q3  4S0213  4S0213  4S3120  4S0123  Q3  Q3  QM Q1  0  3  .  
4  Q4  4S0231  4S1203  4S1320  4S2301  Q4  Q9  QC  QH 0  1  .  
5  Q5  4S0312 4S2013 4S2130 4S1032 Q5  QD  QG Q8  0  2  .  
6  Q6  4S0321 4S2103 4S1230 4S2301 Q6  QF  QA  QH 0  1  Successor/Up 
7  Q7  4S1023 4S0132 4S3201 4S1032 Q7  Q2  QN  Q8  1  3  .  
8  Q8  4S1032 4S1032 4S2301 4S0123 Q8  Q8  QH  Q1  1  2  .  
9  Q9  4S1203 4S0231 4S3021 4S1032 Q9  Q4  QK  Q8  1  3  .  
10 QA 4S1230 4S1230 4S0321 4S2301 QA  QA  Q6  QH 1  0  0-Complement  
11 QB 4S1302 4S2031 4S2031 4S0123 QB  QE  QE  Q1  1  2  .  
12 QC 4S1320 4S2130 4S0231 4S2301 QC  QG Q4  QH 1  0  .  
13 QD 4S2013 4S0312 4S3102 4S2301 QD  Q5  QL  QH 2  3  .  
14 QE 4S2031 4S1302 4S1302 4S0123 QE  QB  QB  Q1  2  1  .  
15 QF 4S2103 4S0321 4S3012 4S2301 QF  Q6  QJ  QH 2  3  Predecessor/Down  
16 QG 4S2130 4S1320 4S0312 4S1032 QG QC  Q5  Q8  2  0  .  
17 QH 4S2301 4S2301 4S1032 4S0123 QH  QH  Q8  Q1  2  1  1-Complement  
18 QI  4S2310 4S2310 4S0132 4S1032 QI  QI  Q2  Q8  2  0  .  
19 QJ  4S3012 4S3012 4S2103 4S2301 QJ  QJ  QF  QH 3  2  2-Complement  
20 QK 4S3021  4S3102  4S1203  4S1032  QK  QL  Q9  Q8  3  1  .  
21 QL  4S3102  4S3021  4S2013  4S2301  QL  QK  QD  QH 3  2  .  
22 QM 4S3120  4S3120  4S0213  4S0123  QM QM Q3  Q1  3  0  .  
23 QN 4S3201  4S3201  4S1023  4S1032  QN  QN  Q7  Q8  3  1  .  
24 QO 4S3210  4S3210  4S0123  4S0123  QO  QO  Q1  Q1  3  0  Identity  
MIN=Q1=∆∆∆∆, MAX=QO=∇∇∇∇ , MV-NOT=∆∆∆∆=4S0123, ∆∆∆∆=4S0123, ∇∇∇∇ =4S3210  
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Table 7: Orthogonal Operators in Binary, Ternary, and Quaternary Systems 

Quaternary System  Ternary  Binary  
1  4Ω001  13  4Ω101  25  4Ω201  37  4Ω301  1  3Ω001  13 3Ω201  1 2Ω001  
2  4Ω002  14  4Ω102  26  4Ω202  38  4Ω302  2  3Ω002  14 2Ω202  2 2Ω010  
3  4Ω003  15  4Ω103  27  4Ω203  39  4Ω303  3  3Ω010  15 3Ω210  3 2Ω101  
4  4Ω010  16  4Ω110  28  4Ω210  40  4Ω310  4  3Ω012  16 3Ω212  4 2Ω110  
5  4Ω012  17  4Ω112  29  4Ω212  41  4Ω312  5  3Ω020  17 3Ω220        
6  4Ω013  18  4Ω113  30  4Ω213  42  4Ω313  6  3Ω021  18 3Ω221        
7  4Ω020  19  4Ω120  31  4Ω220  43  4Ω320  7  3Ω101              
8  4Ω021  20  4Ω121  32  4Ω221  44  4Ω321  8  3Ω102              
9  4Ω023  21  4Ω123  33  4Ω223  45  4Ω323  9  3Ω110              
10  4Ω030  22  4Ω130  34  4Ω230  46  4Ω330  10  3Ω112              
11  4Ω031  23  4Ω131  35  4Ω231  47  4Ω331  11  3Ω120              
12  4Ω032  24  4Ω132  36  4Ω232  48  4Ω332  12  3Ω121              
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Table 8: Prioritors List In Binary, Ternary And Quaternary Digital Systems 
Binary System Prioritors  

Prioritor List By The Priority-Assignment s-code List By B's Code Switches  STAS  Function Table  
No αααα  αααα  αααα-  αααα*  αααα#  αααα  αααα-  αααα*  αααα#  ααααΛΛΛΛ αααα∨ ∨∨∨  αααα  αααα*  List By s-Code  
1  B1  2S01 2S01 2S10 2S01 B1  B1  B2  B1 0  1  B1  B2  2S10:00 (AND)  
2  B2  2S10 2S10 2S01 2S01 B2  B2  B1  B1 1  0  B2  B1  2S11:10 (OR  )  

AND=B1=∆∆∆∆, OR=B2=∇∇∇∇ , NOT=∆∆∆∆=2S01, ∆∆∆∆=2S01, ∇∇∇∇ =2S10  
Ternary System Prioritors  

Prioritor List By The Priority-Assignment s-code List By T's Code Switches  STAS  Function Table  
No αααα  αααα  αααα-  αααα*  αααα#  αααα  αααα-  αααα*  αααα#  ααααΛΛΛΛ αααα∨ ∨∨∨  αααα  αααα*  List By s-Code  
1  T1  3S012  3S012  3S210  3S012  T1  T1  T6  T1  0  2  T1  T6  3S210:110:000 (MIN)  
2  T2  3S021  3S102  3S120  3S201  T2  T3  T4  T5  0  1  T2  T4     3S220:210:000  
3  T3  3S102  3S021  3S201  3S120  T3  T2  T5  T4  1  2  T3  T5     3S210:111:010  
4  T4  3S120  3S120  3S021  3S201  T4  T4  T2  T5  1  0  T4  T2     3S212:111:210  
5  T5  3S201  3S201  3S102  3S120  T5  T5  T3  T4  2  1  T5  T3     3S222:210:200  
6  T6  3S210  3S210  3S012  3S012  T6  T6  T1  T1  2  0  T6  T1  3S222:211:210 (MAX)  

MIN=T1=∆∆∆∆, MAX=T6 =∇∇∇∇ , MV-NOT=∆∆∆∆=3S012, ∆∆∆∆=3S012, ∇∇∇∇ =3S210  
Quaternary System Prioritors  

Prioritor List By The Priority-Assignment s-code List By Q's Code Switches  STAS  Function Table  
No  αααα  αααα  αααα-  αααα*  αααα#  αααα  αααα-  αααα*  αααα#  ααααΛΛΛΛ αααα∨ ∨∨∨  αααα  αααα*  List By s-Code  
1  Q1  4S0123 4S0123 4S3210 4S0123 Q1  Q1  QO Q1 0  3  Q1  QO 4S3210:2210:1110:0000  
2  Q2  4S0132 4S1023 4S2310 4S1032 Q2  Q7  QI  Q8 0  2  Q2  QI  4S3310:3210:1110:0000  
3  Q3  4S0213 4S0213 4S3120 4S0123 Q3  Q3  QM Q1 0  3  Q3  QM 4S3210:2220:1210:0000  
4  Q4  4S0231 4S1203 4S1320 4S2301 Q4  Q9  QC QH 0  1  Q4  QC 4S3230:2220:3210:0000  
5  Q5  4S0312 4S2013 4S2130 4S1032 Q5  QD QG Q8 0  2  Q5  QG 4S3330:3210:3110:0000  
6  Q6  4S0321 4S2103 4S1230 4S2301 Q6  QF QA QH 0  1  Q6  QA 4S3330:3220:3210:0000  
7  Q7  4S1023 4S0132 4S3201 4S1032 Q7  Q2  QN Q8 1  3  Q7  QN 4S3210:2210:1111:0010  
8  Q8  4S1032 4S1032 4S2301 4S0123 Q8  Q8  QH Q1 1  2  Q8  QH 4S3310:3210:1111:0010  
9  Q9  4S1203 4S0231 4S3021 4S1032 Q9  Q4  QK Q8 1  3  Q9  QK 4S3210:2212:1111:0210  
10 QA 4S1230 4S1230 4S0321 4S2301 QA QA Q6  QH 1  0  QA Q6  4S3213:2212:1111:3210  
11 QB 4S1302 4S2031 4S2031 4S0123 QB QE QE Q1 1  2  QB QE 4S3313:3210:1111:3010  
12 QC 4S1320 4S2130 4S0231 4S2301 QC QG Q4  QH 1  0  QC Q4  4S3313:3212:1111:3210  
13 QD 4S2013 4S0312 4S3102 4S2301 QD Q5  QL QH 2  3  QD QL 4S3210:2222:1210:0200  
14 QE 4S2031 4S1302 4S1302 4S0123 QE QB QB Q1 2  1  QE QB 4S3230:2222:3210:0200  
15 QF 4S2103 4S0321 4S3012 4S2301 QF Q6  QJ  QH 2  3  QF QJ  4S3210:2222:1211:0210  
16 QG 4S2130 4S1320 4S0312 4S1032 QG QC Q5  Q8 2  0  QG Q5  4S3213:2222:1211:3210  
17 QH 4S2301 4S2301 4S1032 4S0123 QH QH Q8  Q1 2  1  QH Q8  4S3233:2222:3210:3200  
18 QI  4S2310 4S2310 4S0132 4S1032 QI  QI  Q2  Q8 2  0  QI  Q2  4S3233:2222:3211:3210  
19 QJ  4S3012 4S3012 4S2103 4S2301 QJ  QJ  QF QH 3  2  QJ  QF 4S3333:3210:3110:3000  
20 QK 4S3021 4S3102 4S1203 4S1032 QK QL Q9  Q8 3  1  QK Q9  4S3333:3220:3210:3000  
21 QL 4S3102 4S3021 4S2013 4S2301 QL QK QD QH 3  2  QL QD 4S3333:3210:3111:3010  
22 QM 4S3120 4S3120 4S0213 4S0123 QM QM Q3  Q1 3  0  QM Q3  4S3333:3212:3111:3210  
23 QN 4S3201 4S3201 4S1023 4S1032 QN QN Q7  Q8 3  1  QN Q7  4S3333:3222:3210:3200  
24 QO 4S3210 4S3210 4S0123 4S0123 QO QO Q1  Q1 3  0  QO Q1  4S3333:3222:3211:3210  
MIN=Q1=∆∆∆∆, MAX=QO=∇∇∇∇ , MV-NOT=∆∆∆∆=4S0123, ∆∆∆∆=4S0123, ∇∇∇∇ =4S3210  
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Table 9: Number Of Prioritors In 2-31 Radices Systems 
Radix Prioritors Number Radix  Prioritors Number  

2  2 17  355,687,428,096,000 
3  6 18  6,402,373,705,728,000 
4  24 19  121,645,100,408,832,000 
5  120 20  2,432,902,008,176,640,000 
6  720 21  51,090,942,171,709,440,000 
7  5,040 22  1,124,000,727,777,607,680,000 
8  40,320 23  25,852,016,738,884,976,640,000 
9  362,880 24  620,448,401,733,239,439,360,000 
10  3,628,800 25  15,511,210,043,330,985,984,000,000 
11  39,916,800 26  403,291,461,126,605,635,584,000,000 
12  479,001,600 27  10,888,869,450,418,352,160,768,000,000 
13  6,227,020,800 28  304,888,344,611,713,860,501,504,000,000 
14  87,178,291,200 29  8,841,761,993,739,701,954,543,616,000,000 
15  1,307,674,368,000 30  265,252,859,812,191,058,636,308,480,000,000 
16  20,922,789,888,000 31  8,222,838,654,177,922,817,725,562,880,000,000 

 
Table 10: Binary TAS systems 

TAS TASB1 TASB2 
Base 2S01 2S10 

ancestor (B2,B1) (B2,B2) 
1 (B1,B2) B1 (B1,B1) B2 
2 (B2,B1) B1 (B2,B2) B2 

 
 
Table 11: Ternary TAS Systems 

TAS TAST1 TAST2 TAST3 TAST4 TAST5 TAST6 
Base 3S012 3S021 3S102 3S120 3S201 3S210 

ancestor (T6,T1) (T6,T2) (T6,T3) (T6,T4) (T6,T5) (T6,T6) 
1 (T1,T6) T1 (T1,T5) T3 (T1,T4) T2 (T1,T3) T5 (T1,T2) T4 (T1,T1) T6 
2 (T2,T4) T5 (T2,T3) T2 (T2,T6) T3 (T2,T5) T1 (T2,T1) T4 (T2,T2) T6 
3 (T3,T5) T4 (T3,T6) T2 (T3,T2) T3 (T3,T1) T5 (T3,T4) T1 (T3,T3) T6 
4 (T4,T2) T5 (T4,T1) T3 (T4,T5) T2 (T4,T6) T4 (T4,T3) T1 (T4,T4) T6 
5 (T5,T3) T4 (T5,T4) T3 (T5,T1) T2 (T5,T2) T1 (T5,T6) T5 (T5,T5) T6 
6 (T6,T1) T1 (T6,T2) T2 (T6,T3) T3 (T6,T4) T4 (T6,T5) T5 (T6,T6) T6 
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Table 12: Transferring The Function Table 
Function Table  Term Vectors Table  Representations  
# u  v  f(u,v) Type Vector Components Terms Of  Terms Of  
m Xm2 Xm1 F(Xm) $×% Xm  Xm2  Xm1  Orthogonal-I  Orthogonal-II  
1 0  0  0  $  X1=00 X12=0 X11=0 ( 0αu  ∆012 αv  ∆012) α*  (u  ∆010 αv  ∆010)α*  
2 0  1  1  ×  X2=01 X22=0 X21=1 trivial  trivial  
3 0  2  2  %  X3=02 X32=0 X31=2 ( u  ∆012 αv  ∆212)α*  (u  ∆012 αv  ∆212)α*  
4 1  0  1  ×  X4=10 X42=1 X41=0 trivial  trivial  
5 1  1  1  ×  X5=11 X52=1 X51=1 trivial  trivial  
6 1  2  1  ×  X6=12 X62=1 X61=2 trivial  trivial  
7 2  0  2  %  X7=20 X72=2 X71=0 ( u  ∆212 αv  ∆012)α*  ( u  ∆212 αv   ∆012)α*  
8 2  1  1  ×  X8=21 X82=2 X81=1 trivial  trivial  
9 2  2  2  %  X9=22 X92=2 X91=2 ( u  ∆212 αv  ∆212)  (u  ∆212 αv   ∆212)  
Orthogonal-I Rep: f(u,v)= (0αu∆ 012 αv∆ 012)α*(u∆ 012 αv∆ 212)α*( u∆ 212 αv∆ 012)α*(u∆ 212 αv∆ 212) 
Orthogonal-II Rep: f(u,v)= (u∆ 010 αv∆ 010)α*(u∆ 012 αv∆ 212)α*( u∆ 212 αv∆ 012)α*(u∆ 212 αv∆ 212) 
×Trivial term, $ non-trivial term, %  NMRV-term, NMRV=2, MRV=1, α=T3 , STAS=(T3,T5)  
 
Table 13: Uniform Image-Scaling Of αααα=Q1 Under f=4S3012 
No  A  B  A  f  B  f  A αααα B  AααααofffB   (Aαααα B)   f  A  f ααααofff B  f 
1  0  0  2  2  0  0  2  2  
2  0  1  2  1  0  1  2  2  
3  0  2  2  0  0  2  2  2  
4  0  3  2  3  0  0  2  2  
5  1  0  1  2  0  1  2  2  
6  1  1  1  1  1  1  1  1  
7  1  2  1  0  1  2  1  1  
8  1  3  1  3  1  1  1  1  
9  2  0  0  2  0  2  2  2  
10  2  1  0  1  1  2  1  1  
11  2  2  0  0  2  2  0  0  
12  2  3  0  3  2  2  0  0  
13  3  0  3  2  0  0  2  2  
14  3  1  3  1  1  1  1  1  
15  3  2  3  0  2  2  0  0  
16  3  3  3  3  3  3  3  3  
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Table 14: The Uniform Degeneracy Of Prioritors 
The Uniform Degeneracy Of Prioritors In Binary, Ternary, and Quaternary 

Systems  
Quaternary System  

Q’s  123456 789ABC DEFGHI JKLMNO 
Ternary System  

   444444 444444 444444 444444 T’s  12 34 56 

Binary System  

⇒⇒⇒⇒   SSSSSS SSSSSS SSSSSS SSSSSS ⇒⇒⇒⇒   33 33 33 B’s  1  2  
Select  000000 111111 222222 333333 Select  SS SS SS ⇒⇒⇒⇒   2  2  

"f"  112233 002233 001133 001122 "f"  00 11 22 Select  S  S  
⇒⇒⇒⇒   231312 230302 130301 120201 ⇒⇒⇒⇒   12 02 01 "f"  0  1  
   323121 323020 313010 212010    21 20 10 ⇒⇒⇒⇒   1  0  
αααα  The Uniform Degeneracy ααααofff  αααα  αααα offf  αααα  αααα offf  

Q’s  123456 789ABC DEFGHI JKLMNO T’s  12 34 56 B’s  1  2  
Q1  OIMCGA NHK6E4 LBJ582 F9D371 T1  64 52 31 B1  2  1  
Q2  NHLBF9 OIJ5D3 MCK671 GAE482 T2  53 61 42 B2  1  2  
Q3  MGOAIC KEN4H6 J8L2B5 D7F193 T3  46 25 13       
Q4  LFN9HB JDO3I5 K7M1C6 E8G2A4 T4  35 16 24       
Q5  KEJ8D7 MGL2F1 OAN493 ICH6B5 T5  21 43 65       
Q6  JDK7E8 LFM1G2 N9O3A4 HBI5C6 T6  12 34 56       
Q7  IOCMAG HN6K4E BL5J28 9F3D17 

Q8  HNBL9F IO5J3D CM6K17 AG4E28 

Q9  GMAOCI EK4N6H 8J2L5B 7D1F39 

QA  FL9NBH DJ3O5I 7K1M6C 8E2G4A 

QB  EK8J7D GM2L1F AO4N39 CI6H5B 

QC  DJ7K8E FL1M2G 9N3O4A BH5I6C 

QD  CAIGOM 64HENK 52B8LJ 3197FD 

QE  B9HFNL 53IDOJ 61C7MK 42A8GE 

QF  ACGIMO 46EHKN 258BJL 1379DF 

QG  9BFHLN 35DIJO 167CKM 248AEG 

QH  87EDKJ 21GFML 43A9ON 65CBIH 

QI  78DEJK 12FGLM 349ANO 56BCHI 

QJ  645231 CAB897 IGHEFD OMNKLJ 

QK  536142 B9C7A8 HFIDGE NLOJMK 

QL  462513 AC8B79 GIEHDF MOKNJL 

QM  351624 9B7C8A FHDIEG LNJOKM 
QN  214365 87A9CB EDGFIH KJMLON 

QO  123456 789ABC DEFGHI JKLMNO 
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Table 15: Degenerate Equations Of Distribution Theorem 
Degenerate Equations Of Example 1  

   

#  

   

“offf”  

Uniform Degeneracy Of  
A αααα1 (B ααααOC)=(A αααα1B) ααααO(A αααα1C)    

Under offf Operator  

   

#  

   

“offf”  

Uniform Degeneracy Of  
A αααα1 (B ααααOC)=(A αααα1B) ααααO(A αααα1C) 

Under offf Operator  
1  4S0123  A αO (B α1C)=(A αO B) α1(A αOC)  13  4S2013  A αL (B αDC)=(A αLB) αD(A αLC)  
2  4S0132  A αI  (B α2 C)=(A αI B) α2  (A αIC)  14  4S2031  A αB (B αEC)=(A αBB) αE(A αB C)  
3  4S0213  A αM (B α3 C)=(A αMB) α3(A αMC)  15  4S2103  A αJ (B αFC)=(A αJB) αF(A αJ C)  
4  4S0231  A αC (B α4C)=(A αCB) α4(A αCC)  16  4S2130  A α5 (B αGC)=(A α5B) αG(A α5 C)  
5  4S0312  A αG (B α5 C)=(A αG B) α5(A αGC)  17  4S2301  A α8 (B αHC)=(A α8B) αH(A α8 C)  
6  4S0321  A αA (B α6 C)=(A αA B) α6(A αA C)  18  4S2310  A α2 (B αIC)=(A α2B) αI(A α2 C)  
7  4S1023  A αN (B α7 C)=(A αN B) α7(A αN C)  19  4S3012  A αF (B αJC)=(A αFB) αJ(A αF C)  
8  4S1032  A αH (B α8 C)=(A αH B) α8(A αH C)  20  4S3021  A α9 (B αKC)=(A α9B) αK(A α9 C)  
9  4S1203  A αK (B α9 C)=(A αK B) α9(A αK C)  21  4S3102  A αD (B αLC)=(A αDB) αL(A αD C)  
10  4S1230  A α6 (B αA C)=(A α6 B) αA(A α6 C)  22  4S3120  A α3 (B αMC)=(A α3B) αM(A α3 C)  
11  4S1302  A αE (B αB C)=(A αE B) αB(A αE C)  23  4S3201  A α7 (B αNC)=(A α7B) αN(A α7 C)  
12  4S1320  A α4 (B αC C)=(A α4 B) αC(A α4 C)  24  4S3210  A α1 (B αOC)=(A α1B) αO(A α1 C)  
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16  Figures 

 
Figure 5: Unary S-Code Format 

 
Figure 6: Orthogonal Code Format 

 
Figure 7: Prioritors S-Code Format 

 
Figure 8: Map Of All Possible Pairs of 
Ternary Prioritors 
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