A New
Set of Unary and Binary Operators
With
A New Algebraic System

For

Multiple-Valued Logic Systems:

THE ALGEBRA OF PRIORITY
(AOP)

By
Abu-Msameh, Ramadan K.

http://gtode.user s3.50megs.com
abumsamh@emir ates.net.ae

February 14, 2001

1
2

4

8

Table Of Content

INTRODUGCTION ...ttt e ettt e e e e et e e et ee e aaaeeeeeeeeeeesaaaeseeeeseeeesnaaaeees 2
AOP PRIORITY CONCEPT AND PRINCIPLE ...ttt 5
2.1 DIGITAL SYSTEMS AND DIGITAL EVENTS ...uuiiiiiiiiiiitieeeee ettt eeeeeeeevaeeeeeeeeeeenanns 5
2.2 PRIORITY CONCEPT .ottt ettt et e e et e e e et e e e e e eeae e e et e e eeeaaeeeeeenaaeeennnas 6
2.3 PRIORITY CONVENTION.......cottttuueeeeeeeettttteeeeeeeeeetetaaeeeeeseessesasanaeesesesssssunsaesssssserenns 6
24 PRIORITY ASSIGNMENT «.ttuetetete et e et e e et e e et e e e et e e e e eeaeeeeeaaeeeenanaaeeeeenaaeeennnas 7
AOP UNARY OPERATORSAND OPERATIONS. ... 8
3.1 IMAGE OPERATION ...ttt et e et e e et e e e e taee e e et e e e e teaeeeeeanaeeeenanaaeeenenaaeeennnas 8
32 CONSERVATIVE UNARY OPERATORS......eetttttuueeeeeeeeereeuieeeeeseeeetesmmaeeeeseseeesmmnnnnneseees 9
3.2.1 DOWN-DEl OPEIaLOrccueeeeeieisieeieciesieeeeseesteee e te e e saeeseesseestesseesseesesseenseenns 9
.22 UPDEl OPEIALONeueiieeiieie ettt sttt st sttt be e sreesbe e e seenbesneesreenes 9
3.2.3 INVEISE OPEIALONccuveeeiieieiiie ettt sbe e sbe e sabe e sane e e nnneeennes 9
33 ORTHOGONAL OPERATORS ...eetttttuuieeeeeeeettteeeeeeeeeettsaaaeesessessssssnnaessssssesmsmnaneseees 10
34 UNARY OPERATIONS ..ttt ettt et e e et e e e e teee e e e eeae e e et e e e eeaeeeeeanaeeenanaeeeenanns 10
3.4.1 Sequential IMage OPErALIONcceeiueriieiierieeie e sbe e sreenre e 10
3.4.2 A OPEFALION.......eceeeueeieieiesteesieetesee e eteseesseessesseesseeeesseesseenseaseesseensessensseessensenns 11
RN @0 1S r=Tal @] o1 - Ui o] o FU TSROSO 11
AOP BINARY OPERATORSAND OPERATIONS......oo oot 11
4.1 PRIORITORS ...ttt e e e e e ettt eee e e s e e e e et aaaaaeeseseseresanaeesssseenanes 11
4.2 ALOP OPERATIONS . ettt et e e et e e e et e e e e e e e e e et eeeeraaeeeeeanaeeenanaeeeennnns 13
4.2.1 Notations, definitions and terminolOgycccererereenerie e 13
4.2.2 InfimUM OPEFALIONc.veeieeeieeieeie e ee e e e et esseesseereesreeseeneesneennens 13
4.2.3 SUPIeMUME-OPEN ALIONceiueeieeiesiee e eeesiee st see et seesee e ee e e sbeseesseesbesseesreensesneens 14
4.2.4 Star Operation ON PrioritOrS.......couceieerieieseesieeeeseesessee e sseeseeseesseeaesneesseennens 14
4.2.5 Costar Operation ON PriOriTOrS........ccoieriireenieieseeseesesiee e ste e sseeseesseessesseens 14
F AN O] I AN A I =1 1Y/ T 15
5.1 DIEFINITIONSt eeetitieeee et ettt e et e e ettt eeeeeseeeeeta e aeeseeeeesesananesesessresaraasssseeerenns 15
5.2 TERMINOLOGY ettt ettt e e e e e e e e e e e e e e e e eee e e e e et e e s e eeaaeseeeaaeseeanaaaeee 15
53 TAS CODES ..ottt ettt ee e e e e e ettt eee e e e e e e et eaaaeraeeseeeeesaaaraaeseeas 16
54 TAS SYSTEMS ..ottt e e e e e e e e e e e e e ee e e e e e e e e e eeaaeseenaaaaaee 16
AOP THEOREM S ...ttt ettt e e e e e e e e e e e e eee e e e e e e e e enanaaaaeas 17
6.1 TERMINOLOGY ettt e ee e e e e e e e e e e e eee e e e e eae e e e e eeaeeeeeaaaeseeeaaeseeneaaaeee 17
6.2 ITAS INTRINSIC THEOREMScotttuuieeeteeeetitieeeeeeeeeeeteamaeeeeeeseeeemsnnnsaeesesesessmnnnaaeseees 18
6.3 STAS EXTRINSIC THEOREMS ... etttueeeettee et e e eeeeeeeeeeeeeeeeeeeeeaeeeeareeeenenans 19
6.4 LTAS THEOREMS ...ootttueeeteeeeettteeee e e et eeeteeaeeeeeeeeeeettsaaaeesssseeetsananaeesssesessannnaaeseees 19
AOP ORTHOGONAL THEOREMS. ... oottt n e et et e e e e e raaaan s 20
7.1 NOTATIONS, TERMINOLOGY AND DEFINITIONS.......cooeturrreeeeeeeeeniirreeeeeeeeeeninrrneeeeeees 21
7.2 ORTHOGONAL THEOREM-T ... eeaees 21
7.3 ORTHOGONAL THEOREM-IL....coovtiiiieeiiiieiiieeeeeee ettt e e e e e 22
7.4 AQOP REPRESENTATIONS OF M VL FUNCTIONS ...otiiueetteee et eeeeeeeeeeeeeeenanns 23
7.4.1 Lowest Sart-Off RePpresentalioncoeeeeieeiieniesee et 23
7.4.2 Examples of MVL fUNCLIONS.........ccviiiiieriece st 23
AOP EXPANSION THEOREMS ...ttt e e e e e e en e 24

8.1 EXPANSION THEOREM-T AND IL....uuiiiiiiiiiiiiieeee ettt e et 24

8.2 VARIABLES EXPANSIONoiiiiiiiiiieeeiiiieeeeiiteeeseiteeeesareeeessstaeesennsseeessnnsseeessnssseesanns 25

9 AOPIMAGE-SCALING THEOREMoooiiiiieeeie et 25
9.1 BINARY AND PRIORITY-ASSIGNMENT IMAGE OPERATIONScccevuviieeeriiieeeeninneeeennnes 25
9.2 UNIFORM IMAGE-SCALING THEOREMccottiiiiiieeniiieeiieeeiieesireeeieeesneeesneesniseeenene 26
9.2.1 Examples On Uniform Image-Scaling Theorem..........cccceveevvveerecceseeseseeseenns 26
9.2.2 Deriving DeMorgan's laws DY AOP ..o 27

10 AOP UNIFORM DEGENERACY ..ottt s 27
10.1 NOTATIONS AND TERMINOLOGYeveeruvieeniiieenirieaniieeenireesireesireesseeesseessseessnseesnnses 27
10.2 UNIFORM DEGENERACY OF PRIORITORScetieiiuiiieeeniieeeenniieeeenineeeeennnneeessnnnneeesnns 28
10.3 UNIFORM DEGENERACY OF PRIORITY FUNCTIONSocoviiiiiniiiiniiieniieeniceeiee e 29
10.3.1 Examples on Uniform Degeneracy of Priority FUNCLIONS..........ccccevveeeneciennnnnne 29

10.4 UNIFORM DEGENERACY OF PRIORITY EQUATIONS......ccooviiiiiiiiiiiiiiiiiiieeeeeeeeeeee, 30
11 DESIGN EXAMPLES ...ttt 32
11.1 DESIGN OF TERNARY MULTIPLICATION OPERATIONccccuvtiririeriieenreeenineeenineesnneas 32
11.1.1 Ternary Multiplier Design Using Post algebra.........ccccevveiiievecce e 32
11.1.2 Ternary Multiplier Design Using AOP Orthogonal Theoremtl...........ccccceeceevuenne. 32
11.1.3 Ternary Multiplier Design Using AOP Orthogonal Theoremtlccccccceveeeee. 33
11.1.4 Ternary Multiplier Using AOP multi-operational set of basic operators............. 34
11.2.5 DeSIGN COMPAITSON......eciuiireeireeeeseeesteeeeseesseessesseesseessesseesseessesseessesssesseessesssssseenes 34

11.2 ONE MORE DESIGN OF 3S201:001:111 OPERATIONcevvuviiriiieniieeniieeniieeeniiee e 35
11.2.1 Design of 35201:001:111 Using Post algebra..........cccveceveerenieseeneeieseesie s 35
11.2.2 Design of 3S201:001:111 Using AOP Orthogonal theorentc.cceeeennnene 35
11.2.3 Design of 33201:001:111 Using AOP Orthogonal theorentll............cccccvevveneee. 36
11.2.4 Design of 3S201:001:111 Using AOP multi-operators Set........ccoceevveeereesinnene 36
11.2.5 DESIGN COMPAITSON. ...cueetreeeereerreeeesseesseeeesseessessesseesseeessseessessesseessesssesseessenssens 37

12 DERIVING OTHER ALGEBRASFROM AOP ... 37
12.1.1 Deriving the Kleene's Laws from the Absorption Theorem 11ccccoevevivenenee. 37

13 AOP VERSUSBOOLEAN AND POST ALGEBRAS........coo e 38
13.1 AOP VERSUS BOOLEAN ALGEBRActttiiiiiieeeeiiiieeesiieeeeesineeessnseeeesnnsneeesssnsseeeanns 38
13.2 AOP VERSUS POST ALGEBRAcccuttiiiiiiieiiieeniiieeiieeeiteeeiteesiteesbeeesesteesaneesnnneeennneas 38
13.2.1 Operators DIffEr€NCES.......ccviee e 39
13.2.2 Theor ems DIffer @NCES.......coci it 39
13.2.3 CoNCEPLS DIffEr€NCES.....ccueeieieeitieie et 40

14 CONCLUSION AND EXPECTATIONS......cooiiieeeee et 41
15 TABLES. ..o ns 42
16 FIGURES ettt sttt b e e nne e 49
17 BIBLIOGRAPHY ettt et 50

Figures

Figure 1: Ternary Multiplier By POSt @lgebra.........ccovvieiieiiiereeeeee e 32
Figure 2: Ternary Multiplier By AOP Orthogonal-Iccccooeeeeiienieciseere e 33
Figure 3: Ternary Multiplier By AOP Orthogonal-1ccoooeriiieniniinieeee e 34
Figure 4: Ternary Multiplier By Multi-Operation set Of AOP.........ccccceveveeneeceseeseee e 34
Figure5: Unary SCo0E FOIMBAL..........coiiiiiiieiesiesiee ettt nae e nneas 49
Figure 6: Orthogonal Code FOrMAL............cceiveieiieieeie e see e sae e nae e 49
Figure 7: Prioritors SCode FOrMAaL.........ccccoiiiiirieiieesee et 49
Figure 8: Map Of All Possible Pairs of Ternary Prioritors........ccoccevveevveiesieennsceeseesesennnens 49
Tables
Table 1: ITASININSIC TREOIEMS.........oiiiiieieeesee et eesneens 18
Table 2: STASEXIIINSIC TNEOTEIMS.......couiiirieriiiieiee ettt 19
TabIE 3: LTASTREOMEIMS.eeiiiieiieeie ettt sttt b e e s sbe et e neesreenbenneans 20
Table 4: Design-1 Satistics and Reduction PerCentages..........coovevvveereeieeseenieseeseeseeseeennenns 35
Table 5: Design-11 Satistics and Reduction Percentages...........ccoveevereenerieneesiessieseesieseens 37
Table 6: Conservative Unary OPEratorS.........ccceieerieieereerieseesteseesseesseseessesssssseessessssssesssenns 42
Table 7: Orthogonal Operatorsin Binary, Ternary, and Quaternary Systems.........cccceeveereereennnns 43
Table 8: PrioritorsList In Binary, Ternary And Quaternary Digital Systems...........ccccveene.... 44
Table 9: Number Of PrioritorsIn 2-31 RadiCeS SyStemS.......ccoveereriineenenesee e 45
Table 10: BiNary TAS SYSIEIMS.coiieieieeiiesiestesteeseeee st esseeeesseeeesseesseessessaesseensessesssessessenns 45
Table 11: Ternary TAS SYSIEIMIS.......coiiiieiieieeee sttt sttt e e sbe et seesreeeesneens 45
Table 12: Transferring The FUNCLION Tablec.ccveiieie i 46
Table 13: Uniform Image-Scaling Of a=Q1 Under f=4S3012cccccceveeiereereeieseesieeeens 46
Table 14: The Uniform Degeneracy Of Prioritors........ccoceveecerieeiesie e seeseese e seeseesneens 47
Table 15: Degenerate Equations Of Distribution Theorem...........ccoceveeieniinenin e 48
Definitions
Definition 1: Priority CONCEPLiieeiieeieeiesie e stee e ste st et e et ae s ste e e s e eseesaesneeeesneens 6
Definition 2: Priority CONVENTIONc.oiiiiieiieie ettt st ee e see e 6
Definition 3: Priority PriNCIPIE......ciic ettt s sne e 7
Definition 4: Priority-ASSIgNMENt COUEccoiiiiierieiisie st 7
Definition 5: Unary ImMage OPEIralorccvecueieererieseesieeeesiesseeseesseessesseesseessesseessesssssseessenns 8
Definition 6: Unary Conservative OPEralorS.........ceieereeriereeriesieeseesiesseesseeseeseesseessessesssesssens 9
Definition 7: DOWN-DEl OPEIator '[7ooeeiieiesieeieesee ettt 9
Definition 8: UP-Del OPEIaLOrccccoiieiiiiieiieeie ettt ettt sre e e 9
Definition 9: INVErSE OPEIALOcccuveieeeeieeeesieeseeeeseeseesseesseeseesseesseeeesseesseensesseesseensesseenses 10
Definition 10: Unary Orthogonal OpErator...........ccooeeeereeieseesieeieesee e see e see e sseesseseeseeas 10
Definition 11: Sequential Image OPEration...........ccoieeieeiereereee e 10
Definition 12: Star OPErationcceeceeeieiiereeieeseeseeee e se e eesteesee e e e eeesseesseesesseesseenees 11
Definition 13: The Costar OPEratioN..........ccocieiereerierieseesie e see e see e sseseesseeseesneas 11
DefiNition 14: AOP PriOritOrS.......ccieieiiriisesiesiesiesesesee sttt st se et st s ae st s sseeneas 12
Definition 15: INfimUM digit.......ooouiiiieiee e e 13
Definition 16: SUPremMUM digit.......cccveiieieeiesieie et e e enaeenes 14
DEfiNitioN 17: TASBASE ..ottt sttt besseese et e naesseseeseeenensens 15
DEfiNItioN 18: TAS SYSLEIML......ciieieiieseeeeee st esesee s e e e steesae e s reesse e e e sseeteeneesreeseeneenseenses 15
Definition 19: Mate Operation and OPEIatorccceeieriereerieriee e seeee e see e eesreeses 15
Definition 20: Comate Operation and OPErator...........ccueceeeererieesieeseeseeseeseeseeseesseeseeseenees 15
Definition 21: CouNting OPEIALOFccoueieerieeiereesieesieeeesteeseeseesreesseseesseesseseesseessessesseesees 21
Definition 22: Lowest Start-Off REPreSentation...........cocvceieereeieeseeseeseseese e seese e s 23

Definition 23: Priority-assignment Image Operation............ccoveerereeneeniesenseesesee e see e 25
Definition 24: The binary image OPEratioN..........c.cceceeeeieeieseereere e se e seesee e e esaeseesneas 25
Definition 25: Priority functions and Priority equations.............ccccerveneeneninsee s 28
Definition 26: Uniform Degeneracy Of PrioritorS.......ccoeceieererieeseese e seesie e seesse e 28
Definition 27: Uniform Degeneracy Of fUNCLIONS...........ccooiiiiierienieneeie e 29
Theorems
Theorem 1: NUMDEr Of PriOritOrScoouoiiiieiiesiee ettt 13
Theorem 2: ITASTNEOrEMS (19) ...c.veeiiieeeseeseee sttt ste et sae e s e beeneesreereeneens 18
Theorem 21: STASEXIiNSIC ThEOr€MS (12)......coiuiiiiiierieeienee et s 19
Theorem 34: LTASTNEOIEMIS (2) ...ccveeieiieiieieeieseeseeee st este et e e see e esae e sseesesneesseesesnenns 20
Theorem 37: Orthogonal TheOrEMH] ..o 22
Theorem 38: Orthogonal TheOr &Mc.eeceeece e 22
Theorem 39: EXPanSioN TREOIEMH]cc.oiiiiieiieie et 24
Theorem 40: EXPansion TREOTEMHI]ocuvieeiece ettt nne e 24
Theorem 41: Uniform Image-Scaling (UIS) TREOIremccooiiiriiniereeeeee e 26
Theorem 42: Uniform Degeneracy Equivalence Theoremccccevveveneerenceeseeneeseeseesnens 30
Theorem 43: Equations Uniform Degeneracy ThEOreM..........cooceveriereenenienee e 31
Examples
Example 1: ONn Priority CONVENTION.coiiieieriesieeie et sne e s 7
Example 2: ONn Priority CONVENTION.........ccoeiieiieieseeieseesie e see s eae e esseeaesseesseeeesseensesneens 7
Example 3: On Priority-aSSigNMmeNt. ..o st sse e 7
Example 4: ONn Priority ASSIGNMENT.......ccviiiierieeeseesieeeeseeee e e eaeseesseeseesseesseeaesseessessensns 7
Example 5: On Sequential Images of Unary OPeratorsScoeeveeeereeneseesiesseeseeseesseeseeeens 11
Example 6: On The Sar OPEration.........ccccueieeieiiereeieseesie e seeseeseesteeeesreessesseesseesesseessens 11
Example 7: On The Costar OPerationccoceeieeeieeneeiee e sie e e es s sse s ssesssessesssesees 11
Example 8: On The Star Operation Of PrioritorScccccveieieereeieseese e see s esse e e 14
Example 9: On The Costar Operation Of PrioritOrs.........ccocovveererienienese e 14
Example 10: On Counting OPEratorcceieerieeieseeneesieseesseeseesseesseesessseessessessseessessesssessees 21
Example 11: On MVL representationS DY AOP ... 23
Example 12: On Orthogonal TheoremS-1& 11ccvceeiieii i 24
Example 13: On VariableS EXpansion | & 11 ..o 25
Example 14: On Variable EXPanSION-|cccceiieiiieiicie e 25
Example 15: On Variable EXPanSION-I1 ..o 25
Example 16: On Prioritors Images OPerations.........cccoveveieereereeseeseeseeseesseeseeseessessessseesees 26
Example 17: On Uniform Image-Scaling Theorem (QJ,4S1302)cceeereererieenennieseesiennens 26
Example 18: On Uniform Image-Scaling Theorem (Q1=MIN,4S3012)cccccvrvervecuerrennnn. 27
Example 19: On Uniform Image-Scaling Theorem (Q1,4S0123)ccccoervrrerneneeneniensieenens 27
Example 20: On Uniform Image-Scaling Theorem (T1,3S012).......cccccevvveerveceeseeneeseeseeenen 27
Example 21: On Deriving DeMorgan's Laws from UIStheorem.........cccoceveeieneenenceneenn. 27
Example 22: On Uniform Degeneracy of Prioritors.........ccceceieeveseeseeieseesesee e eee e 28
Example 23: On Using Uniform Degeneracy Table...........cocoveriiiininiineeeeeeeese e 28
Example 24: On Uniform Degeneracy of Q1 and QO.........cccvvieieeieneerecieesieeeseesee e 28
Example 25: On Uniform Degeneracy of B1 (AND), B2 (OR)cccoevererieneeneneeseeee e 29
Example 26: On Duality from AOP DEJENEIACYcccveeerierrieriesieeieseeseeseesseessesseessesssesseenees 29
Example 27: On Uniform Degeneracy of functions without constants..............cccceceeeiieeninnne 29
Example 28: On Uniform Degeneracy of functions with constants............cccecveeeveeieseenieenen. 29
Example 29: On Uniform Degeneracy of functions with constants............ccccceveeveeveneenennnn. 29
Example 30: On Uniform Degeneracy of functions with constants............cccccveeeveevesceenieennn. 30

Y

Example 31.
Example 32:
Example 33:
Example 34:
Example 35:
Example 36:
Example 37:
Example 38:
Example 39:
Example 40:
Example 41:
Example 42:
Example 43:

On Uniform Degeneracy Equivalence Theorem...........ccocceveevenceneniinseesieseene 30
On Uniform Degeneracy Equivalence Theorem with constants............c.c......... 30
On Uniform Degeneracy of A+ (B+1)=1......ccceoriiriinieren e 31
On Uniform Degeneracy of Equations with constants............ccccceeeveceerecceeseenne. 31
On Uniform Degeneracy of Distribution Theoremfor z=4..........cccocevveiennenne 31
Ternary Multiplier Design using Post algebra..........cccccvveeveeeeneese s 32
Design using AOP Orthogonal Theoremtcccooeieeiiieniee e 33
Design using AOP Orthogonal Theoremtlccccveeevvececiene e 33
Using AOP multi-operational set of basiC operators.........cccoeveeeceeieeccieevieene, 34
Design of 35201:001:111 Using Operation using Post algebra...........c.ccceveee.. 35
Design of 35201:001:111 Using AOP Orthogonal theorentlcccceceeuenee. 36
Design of 33201:001:111 Using AOP Orthogonal theorentlIcccccevneeee. 36
Design of 3S201:001:111 Using AOP multi-operators Set........ccoeeveeveereeneeenen. 36

Abstract

A New Set of Unary and Binary Operators
With A New Algebraic System
For Multiple-Valued Logic Systems:
The Algebra Of Priority
(AOP)

By
Abu-Msameh, R. K.
http://gtode.users3.50megs.com
abumsamh@emirates.net.ae

The aim of this paper is to introduce a new set of unary and binary operators
with a new algebraic system that will allow the design of MVL digital circuits in a way
that is simpler and much more efficient than the traditional operators of MVL
systems. The algebra associated with these operators is called the algebra of
priority (AOP). It is a new multi-valued multi-operational switching algebra. This
newly introduced algebra was developed based on the priority concept. This paper
(1) presents the priority concept and principle; (2) presents the development of AOP
based on the priority principle; (3) presents the new binary operators of AOP which
are called "prioritors" for binary, ternary and quaternary systems; (4) proves that the
number of prioritors in a z-radix digital system is z!; (5) presents the basic intrinsic
and extrinsic theorems of AOP; (6) presents the orthogonal theorem-I and Il, which
extends the Post representations of MVL functions from two representations
(sum-of-products and product-of-sums) to z! representations; (7) presents the
expansion theorem | and I, which extends the Post expansions of MVL functions
from two expansions (sum-of-products and product-of-sums) to z! expansions (8)
presents the uniform image-scaling theorem which replaces DeMorgan's laws (9)
presents the absorption theorem-Ill which replaces Kleene's laws. (10) presents
the uniform degeneracy theory which replaces the duality theory; (11) shows how
to derive Boolean, Post algebra and Kleenean algebras from AOP and (12) presents
design examples using AOP.

Keywords of AOP: algebra of priority, conservative operators, orthogonal operators,
priority principle, prioritors, infimum, supremum, STAS, ITAS, degeneracy,
descendants, ancestors, Image-Scaling, child-equation, parent-equation, degenerate
operators, degenerate equations.

Keywords of MVL literature: multiple-valued logic, binary, ternary, quaternary,
switching algebras, Boolean algebra, Post algebras, Kleenean algebra, function
representations, Kleene’s laws, DeMorgan’s Laws, duality, Post representations,
Post expansions.

A New Set of Unary and Binary Operators
With A New Algebraic System
For Multiple-Valued Logic Systems:
The Algebra Of Priority
(AOP)

1 INTRODUCTION

Background: Binary logic is an area that deals with the representation of data with
two values ‘0’ and ‘1’. The problem encountered with binary logic is the large number
of bits that is needed to represent data. This problem is reflected at the hardware
level in two well-known problems: pinout problem and interconnection problem.
The solution to this problem was to increase the number of its logical values and
not to limit them to two logical values. This solution gave rise to the development
of Multiple-valued Logic (MVL) field, which uses multiple logical values to
represent data. The number of these logical values is usually expected to be three or
more. For example, in a four-valued system, MVL uses four values to represent data.
If these values were to be numerical values, then 0,1,2, and 3 would be used. In this
way, MVL solves (theoretically) the pinout problem and it simplifies circuit complexity
of binary logic circuits.

Motivation: However, MVL designs digital circuits using the traditional operators
MIN, MAX, MV-NOT, and complementary operators. The problem encountered in this
design, is the large number of traditional operators that is needed to build up a digital
circuit. This large number increases complexity and interconnections of MVL
circuits. The more operators a MVL circuit needs, the more complex it gets and its
interconnections get even more complex. A solution to this problem is to increase
its basic_operators of design and not limit them to the traditional operators. This
approach will give rise to a new field called Multiple-Operational Logic (MOL),
which uses multiple-operations from unary and binary operations to design digital
circuits. Thus, MOL is aimed at introducing into logical systems a variety of
new_operators that will make design _more flexible than the MVL traditional

operators.

Contributions: In doing that, | developed a new set of unary and binary operators
that will increase the number of basic operators and will make design more flexible
than using the traditional operators alone. The new unary operators are classified
into two categories: conservative operators (covered in §3.2) and orthogonal
operators (covered in §3.3). The new binary operations are called prioritors
(covered in §4.2). The number of these operators for a z-radix system is z%(z-1) for its
orthogonal operators, z! for its conservative operators, and z! for its prioritors. The
traditional operators are a subset of the new operators®.

In 1938, Claude Shannon showed how the logical laws of Boolean algebra,
founded by George Boole in 1849, could be used to synthesize digital circuits
implemented by AND, OR, and NOT operators. Also, researchers showed how the
laws of Post algebra, could be used to synthesize digital circuits implemented by

! From this point and on, we will refer to the sets of prioritors, conservative operators, and
orthogonal operators by the term " AOP basic operators" or "the new operators".

MIN, MAX, MV-NOT, and complementary operators. Unfortunately, these algebras
cannot _be fully used with the new operators of AOP to synthesize digital circuits?.
Boolean algebra is wonderful for the binary system but it does not work for other
systems. Post algebra works for subsets of the new operators of AOP but not for all
of them. Thus, Boolean and Post algebras cannot be fully used to synthesize digital
circuits implemented by the various combinations of prioritors, conservative

operators, and orthogonal operators®. With no other choice left, | developed a new
algebraic system, called the Algebra of Priority (AOP), that can fully serve these
new operators and be used to synthesize digital circuits implemented by the various
combinations out of these new operators. Thus, AOP uses the new set of
operators for circuits _design_and provides all the rules and procedures that
lead to the design of any given digital circuit in a way that is simpler and much
more_efficient than the designs obtained by the traditional operators of MVL
systems. Since AOP works for large set of operators, it is described as a multi-
operational algebra and since it works for any z-radix system, it is described as a
multi-valued algebra. Thus, AOP is a multi-valued, multi-operational algebra.

In this paper, | solved two design problems (covered in §11) using the traditional
operators and using the new operators. In the first design (covered in §11.1), | used
the traditional operators, by Post algebra, and obtained the ternary multiplication
operation by sum-of-products as a composition of 9 binary operators (6 MIN, 3 MAX)
and 8 unary operators and by product-of-sums as a composition of 15 binary
operators (9 MIN, 6 MAX) and 14 unary operators. In the second design (covered in
§11.2), | used the traditional operators, using Post algebra, and obtained the given
ternary operation by sum-of-products as a composition of 16 binary operators and 12
unary operators and by product-of-sums as a composition of 20 binary operators and
16 unary operators.

For the same two problems, | obtained different designs using the new operators of
AOP. For the first problem, | designed the multiplication operation (covered in §
11.1.4) by 3 binary operators and one unary-operator. For the second example
(covered in §11.2.4), | designed the circuit by 3 binary operators and one unary
operator.

When we compare the designs obtained by the traditional operators and the ones
obtained by the new operators of AOP, we find the following: In the first example, for
the sum-of-products, AOP cuts the binary operators using its multi-operations by 66%
and the unary operators by 87.5%. For the products-of-sum, AOP cuts the binary
operators using its multi-operations by 80% and the unary operators by 92.85%. In
the second example, for the sum-of-products, AOP cuts the binary operators using its
multi-operations by 85% and the unary operators by 93.5%. For the products-of-sum,
AOP cuts the binary operators using its multi-operations by 93.75% and the unary
operators by 81.25%. Thus, these cuts show that the new operators can reduce
circuit complexity of MVL circuits which lead to low power consumption, less
propagation delay, higher speed, and less chip space.

The algebra associated with these new operators was developed based on the
priority concept (covered in §2) from which its name was derived (The Algebra of
Priority AOP). Thus for a z-radix system, AOP is based on "z" logical values, z! binary

% See my web site http:/gtode.users3.50megs.com
® See similarities and differences between AOP and Post algebra

3

operators called “prioritors”, z! unary operators called “conservative operators”
and Z’(z-1) unary operators called “orthogonal operators”.

It turned out that AOP is a very rich algebraic system in terms of its concepts,
theorems and operators. Its results agree with the results obtained by Boolean
algebra and by Post algebra and at the same time it expands the concepts and
theorems of Post algebra even though it was developed totally from concepts that
are completely independent of Post concepts and of Boolean concepts. For
examples:

1.

AOP extends the representations of MVL functions from two representations
to z! representations (covered in §7) using its orthogonal theorems [& 1II. Its
orthogonal theorem-Il (covered in §7.3) provides a much efficient
representations of MVL functions for hardware implementation than Post
representations because it uses less number of binary operations.

AOP extends the expansion of MVL functions from two expansions to z!
expansions (covered in §8)using its expansionstheorems|&II.

AOP extends DeMorgan's laws by its Image-Scaling theorem (covered in §
9.2). In Boolean and Post algebras we can break the image of a binary
operation by DeMorgan’s laws (see Example 21) only if we use the NOT and
MV-NOT operators. However, under the Image-Scaling theorem of AOP, we can
break the image of a binary operation under all conservative unary operators
(see Example 18).

AOP extends Kleene's laws by its absorption theorem |11 (covered in §12.1.1).

AOP extends the current duality theory by its degeneracy theory” (covered in §
10). Instead of saying an operator has a dual (see Example 26) we say an
operator has “descendants” or “degenerate operators”. The number of
descendants for an operator depends on the system radix and on the operator
itself. For prioritors, the number of descendants depends on the system radix
only and it is equal to z!. For example, it is 2 for the binary system, 6 for the
ternary system and 24 for the quaternary system.

The degeneracy theory of AOP agrees with the results of Boolean algebra
since the number of descendants is always ‘2’. However, it differs from Post
algebra for non-binary radii. For example, in ternary system, the MIN under
AOP has six descendants rather than two under Post algebra; in the
quaternary system, it has 24 descendants rather than two under Post algebra.

The degeneracy theory extends duality in binary system to be applied for
other binary operators other than AND or OR. For example, the degeneracy
theory extends the “duality” concept in Boolean algebra to cover the XOR,

* The degeneracy theory is much like "Object-Programming theory". The concepts of "inheritance",
"ancestors", “descendants” can be now applied to hardware as well as it is done in software. Object
programming theory deals with data and code. The degeneracy theory deals with operators (like
data) and equations (like code).

and NXOR and others as well.

7. AOP extends the duality concept of equations by its degeneracy theory
(covered in §10.4). Instead of saying an equation has a dual we say an
equation has “descendants”, “degenerate equations”, or “child-equations”.
The number of child-equations for a parent-equation depends on the system
radix and on the equation itself. For priority equations®, the number of
descendants depends on the system radix only and it is equal to z!. For
example, it is 2 for the binary system, 6 for the ternary system and 24 for the
quaternary system (see Example 34).

The degeneracy theory of AOP agrees with the results of Boolean algebra
since the number of child-equations or “descendants” is always ‘2’. However,
it differs from Post algebra for non-binary radii. For example, the
distribution equation in ternary system has six descendants in AOP rather than
two in Post algebra.

2 AOP PRIORITY CONCEPT AND PRINCIPLE

In reality, we always face parallel events that occur at the same time. At
some point in time, these parallel events are to be processed sequentially by a
processing system that takes each event one at a time until it processes all of
them. The picking process depends on the events and on how the system is
programmed to handle them. To program the processing system, we use the
concepts of priority to give each event a distinct priority that determines its
processing order by the processing system. Based on a priority assignment and a
priority convention, the processing system determines how to process these events
sequentially.

For example, we imply the concept of priority in traffic controllJ signs: green
(go), red (stop), and yellow (slow down for a stop). The vehicles arrive at the same
time from different directions to a collective point (parallel events). The traffic signs
(processing system) at the collective point give each direction a priority signal to
handle its events. The direction that receives the green light (priority to pass by
convention) allows its events (vehicles) to flow in the system structure (streets). The
direction that receives the red light (priority to stop by convention) puts its events in
that direction to stand by.

Another example is found in computers. A microprocessor, at some point in
time, receives parallel interrupts (events), which require processing. The
microprocessor, by software or hardware means, determines which interrupt should
be first acknowledged for processing based on the priority of each interrupt.

2.1 Digital Systems and Digital Events

In digital systems, there are components that process data represented by
parallel digital signals. The components are the processing systems and the data
signals are the parallel events. In this case, we can apply the priority concept, as

®> When all the binary operators of an equation are prioritors we call it a priority equation

seen in the traffic example and others as well, to digital systems and develop a
mathematical system that can describe any digital system and predicts the behavior
of its components. To develop such a mathematical system, we will treat digital
signals (events) as variables, processing systems (processors) as operators
(mathematical operations) and signals levels as states (digits). The mathematical
system that will be developed based on the priority concept in this paper is called
“The algebra of priority (AOP)” in an analogy to “The Algebra of logic”.

In summary, AOP describes a multi-valued digital system with “z” distinct
states or (logical-value) and it refers to these states by '0', '1', ..., up to 'z-1". The
set {0, 1, ..., z-1} is called the states-set or (logic-set) and each entry in the set is
referred to as a state or logical-value.

2.2 Priority Concept

The logic concept is the keystone behind Boolean algebra. In a similar way, the
priority concept is the keystone behind AOP. It is a universal and a natural concept
that | did not create nor discovered but rather used. From the aforementioned
introduction we can verbalize the priority concept in a standard statement as stated in
Definition 1

Definition 1: Priority Concept

In a processing environment, the event with the highest priority in a group of events and
distinct priorities will be acknowledged first by the environment processing system.
Assume we have “n” digital signals that run through an n-line data bus to a digital
component in a z-radix digital system where each line is represented by an
independent variable. This gives us “n” independent variables. These “n” signals are
parallel events that reached the component at the same time (in theory). Assume
now the component is going to process all of these events according to the priority
concept by allowing the event with the highest priority to pass throughout its
output based on a priority assignment determined by the logical-values of the
signals. This requires from us to assign a distinct priority for each logical-value in
the logic-set. Since the logic-set has “z” logical values, then there are “z
distinct priorities needed to represent these logical values. The set of these
distinct priorities is called the priority set and is defined to be {0, 1, 2, 3, ..., z-1}
where each digit in the set is called a priority or a priority-value. The assignment of
distinct priorities to the logical values of the logic-set or vice versa is called a priority-
assignment. By convention, we will assume the order of priorities to be the
numerical order of the priority values. That is, the priority with the least value
represents the least priority and the priority with the highest value represents the
highest priority. This statement is standardized in Definition 2. From this definition,
the ‘O’ priority represents the least priority and the “z-1" represents the highest
priority.

” [{g=])

2.3 Priority Convention

Definition 2: Priority Convention

The order of priorities is defined to be the numerical order of the priority-values. That is, the
priority-value with the least value is the least priority and the priority-value with the highest
value is the highest priority.

Example 1: On Priority Convention

In our traffic example we have three logical values (z=3): 'Red', 'Green’, and "Yellow'.
Based on the priority convention of Definition 2, the priority of the 'Green' logical
value is '2', the priority of the "Yellow' logical-value is '1', and the priority of the 'Red'
logical value is '0'. The highest priority value is '2', thus the 'Green' logical value has
the highest priority. The least priority is '0', thus the 'Red' logical value has the least
priority.

Example 2: On Priority Convention

In the quaternary system, assume the priority of each digit is defined as follows: the
"1" digit has the first priority, the "3" digit has the second priority, the "0" digit has the
third priority and the "2" digit has the fourth priority. From this assumption, we see
that the ‘1’ digit must have the highest priority and the 2’ digit must have the least
priority. According to the priority convention of Definition 2, the ‘1’ digit has a priority
of “3”, the “3” digit has a priority of “2”, the ‘0’ digit has a priority of “1” and the 2’ digit
has a priority of “0”.

At this point we need to translate the priority concept into a statement relevant
to digital systems called a "priority principle" as defined in Definition 3.

Definition 3: Priority Principle

The priority principle states that “in a priority based digital system, the digital event with the
highest priority in a group of digital events and distinct priorities will be acknowledged first
by the processing system according to a given priority-assignment which assigns a distinct
priority for each logical value in the logic-set of a z-radix digital system”.

2.4 Priority Assignment

The priority assignment is a program by which the system will manage the
processing order of its events.

Example 3: On Priority-assignment

In the quaternary digital system, we can assign a priority of O for the '2' logical value;
3 for the "1' logical value; 2 for the '3' logical value; 1 for the '0' logical value. Under
this assignment, the logical-value "1" has the highest priority, the logical-value "3"
has a less priority than the logical-value "1", the logical-value "0" has a less priority
than the logical-value "3" and the logical-value "2" has a less priority than the logical-
value "0".

AOP expresses the priority-assignment in a code called the "priority s-code" or
"priority-assignment s-code" as defined by Definition 4.

Definition 4: Priority-Assignment Code

The priority-assignment code lists the 'z' distinct logical-values in a number prefixed with
"zS" so that the position of each logical-value from right (counting from zero) in that number
isitspriority.

Example 4: On Priority Assignment

The s-code for the priority-assignment defined by Example 2 is written as 4S1302.
The prefix is "4S" and the priority assignment is “1302”. In this priority assignment:
the "2" is the first digit from right with position "0" (counting from 0) the "0" is the

7

second digit from right with position '1', the "3" is the third digit from right with position
'2', and the "1" is the fourth digit from right with position '3'. The position of each digit
is the priority of that digit. Thus, the "2" has a '0' priority; the "0" has a '1' priority;
the "3" has a '2' priority and the "1" has a '3' priority. In a similar way, the s-code for
the priority-assignment defined by Example 1 is written as 3S210.

In the s-code of the priority-assignment, the position of a digit reflects its
priority relative to the other digits. Each digit has a higher priority than any other digit
to its right and a less priority than any other digit to its left. Therefore, the least
significant digit (the first digit from right) has the least priority of "0" and the most
significant digit (the first digit from left) has the highest priority of 'z-1'.

Before we move to the next section to continue to use the priority principle to
derive the binary operators of AOP, which are called prioritors, we have to stop at
this stage and consider important and essential operations as a background to the
section.

3 AOP Unary Operators and Operations

AOP unary operators are operations that operate on variables. In a z-radix digital
system, there are z* unary operations. The set of unary operators is partitioned into
"m" partitions, where "m" is the number of partitions of system radix 'Z' into
positive summands®. AOP uses two out of these "m" partitions in a z-radix digital
system. The first partition is called the conservative partition and its operators are
called "conservative operators"”, the second partition is called the orthogonal
partition and its operators are called "orthogonal operators". In this section, we will
describe only these two types of operators.

3.1 Image Operation

Unary operators are one-variable functions that map the logic-set into itself.
Because we will use unary functions as unary operators, we modified the "f(x)"
functional notation to the "x”' " operational notation as defined by Definition 5.

Definition 5: Unary Image Operator
The unary image oper ator, denoted by “ (7", is defined as x" ' =f(x) where “x” is a
parameter and “f” is a unary operator.

In AOP, we identify unary operators by the unary s-code. The s-code lists the
function table of a unary operator in a string of digits starting from right to left prefixed
with 'zS' where 'Z' is the system radix and 'S' is a character stands for labeling the
code as a system-code. Figure 5 shows the format of the unary s-code using the
451023 unary operator.

According to Definition 5, the unary operator must be shown to the right of the image
“0" operator. Using f=2S01 (NOT) operator in the binary system, the following are
unary image operations 0% =1, 1“7 =0. Under f=451023, 0" =3, 177 =2, 287 =0, 3°f
=1. Under f=481122, 0" =2, 177 =2, 27" =1, 3" =1, Under f=453023 0" " =3, 1”7 =2,
2"7=0,3"" =3,

® For example p(1)=1, p(2)=2, p(3)=3, p(4)=5, ...

3.2 Conservative Unary Operators

At some point in time, in MVL digital systems we have to take the image of a
data set and then retrieve this data set at another point in time. Such cases are seen
in data encryption at the hardware and software levels and in data storage devices
like MVL flip-flops. Boolean algebra uses the NOT operator to convert and reconvert
data. Post algebra uses the MV-NOT operator. AOP uses a more generalized set of
operators to convert and reconvert data, which are called “conservative operators”
as defined by Definition 6.

Definition 6: Unary Conservative Operators
A conservative unary operator is an operator that is represented by a one-to-one function that
maps the logic-set into itself.

The number of conservative operators in a z-radix digital system is equal to z!
[14]p.172. Table 6 shows a list of all conservative operators in the binary, ternary and
quaternary systems. The table lists conservative unary operators using the unary s-
code under the "a" column.

There are two special conservative unary operators which are: Down-Del and Up-Del
operators.

3.2.1 Down-Del Operator

Definition 7: Down-Del Operator 'O’
The Down-Del operator, denoted by "[1", is given by the s-code as [1=zS(z-1)*3210.

The Down-Del operator is a unary operator where the image of a variable "A"
under it is always equal to the variable itself. That is, A” “ =A (this property is called
the identity property of the Down-Del operator). For example, the Down-Del
operator is 0=2S10 in the binary system, [0=3S210 in the ternary system and
0=4S3210 in the quaternary system.

3.2.2 UpDel Operator

Definition 8: Up-Del Operator
The Up-Del operator, denoted by "A", is given by A=zS0123ee¢(z-1).

The Up-Del operator is a unary operator where the image of a variable "A"
under it is always equal to Z-A-1. That is, A® =Z-A-1. This operator corresponds to
the MV-NOT or complement operator in Post algebra and for NOT operator in
Boolean algebra. For example, the Up-Del operator is A=2S01 in the binary system,
A=3S012 in the ternary system and A=4S0123 in the quaternary system.

3.2.3 Inverse Operator

In AOP, data retrieval is done by the use of unary operators called the inverse unary
operators as defined by Definition 9.

" AOP uses this name, because these operators preserve data and the converted data can be
retrieved without any loss.

Definition 9: Inverse Operator

If "y" is a conservative unary operator, then y’ is the inverse of "y" if and only if (A"Y)"¥ =
(A")Py=n.

Where ‘[T is the Down-Del unary operator (see Definition 7) and ‘-’ is the inverse
operator. If y=y-, then 'y' is called a self-inverse operator. Table 6 shows the
inverse of all conservative operators in the binary, ternary and quaternary systems
listed under the "a" and "a-" columns.

At the hardware level in AOP, conservative operators are called “converters” and
self-inverse operators are called “inverters”.

3.3 Orthogonal Operators

Post algebra uses the generalized complementation operators Cop, ... Cpq
where "n" is the order of Post algebra [4]. Boolean algebra uses the NOT
complement operator. AOP uses a more generalized set of unary operators called
the “orthogonal operators” as defined in Definition 10. The generalized
complementation operators in Post algebra and the NOT operator in Boolean algebra

are a subset of the orthogonal operators of AOP.

Definition 10: Unary Orthogonal Operator

The unary orthogonal operator in AOP is defined as x2 **

={ c if x=a and b otherwise}.

The “c” is called the active-state digit, “b” is called the inactive-state digit, “a” is
called the activating-digit, “x” is a parameter and “IA ” is the orthogonal operator
symbol. The image of “x” under a unary orthogonal operator is equal to the active-
state digit when “x=a” and is equal to the inactive state digit when “x” is not equal to
“a”. For example: 0 91=0, 13 01=g, 213 9= 3®3 0= The number of unary
orthogonal operators in a z-radix digital system is given by ¢(z)=z%*(z-1).Table 7
shows a list of all orthogonal operators of AOP in the quaternary, ternary and binary
systems using the Q-code whose format is shown in Figure 6.

3.4 Unary Operations

3.4.1 Sequential Image operation

By Definition 5 we can take the image of variables but sometimes in AOP
there are situations where we have to take the image of a unary operation by another
unary operation as defined in Definition 11.

Definition 11: Sequential Image Operation

Let ‘" and ‘y’ be two unary operators. The image of ‘y’ under ‘f” is written as yD Fand is
obtained by taking the ‘f* image of each digit in ‘y’. That is y" =(foy)(x) =f(y(x)) where 'x' is
a variable .

This sequential image operation is an associative [14] p192-193 but not
commutative [14] p.191.

10

Example 5: On Sequential Images of Unary Operators

Let f=4S3012 and y=4S0123. The image of 'y’ under ‘f is y” f =450123" 453012
=452103 and the image of ‘f under 'y’ is f~Y=453012" 45°12% =450321. Note that f~¥
% ny shows that this operation is not commutative.

There are two major unary operations in AOP: the star operation and the
costar operation. Table 6 lists the star under the a* column and the costar under the
o# column of each conservative unary operator.

3.4.2 Star Operation

Definition 12: Star Operation

The star operation of a unary operator is obtained by flipping the function table in the unary s-
code so that the digit at the “i"” position becomes at the "(z-i-1)"" position and it is denoted
by 'f*' and is read as the star of a. The image under f* is given by x~ "= (z-1-x)” ©.

Example 6: On The Star Operation

In the binary system, for f=2S01 f*=2510; f=2S10 f*=2S01. In the ternary system,
for f=3S012 f*=3S210; f=3S021 f*=3S120; In the quaternary system, for f=4S0123,
f*=4S3210; f=4S3210, f*=4S0123.

3.4.3 Costar Operation

Another operation that is related to the star operation is the costar operation. The
"costar" operation generates a unary operator, say 'y', from a unary operator, say 'u',
such that u”Y=u*.

Definition 13: The Costar Operation)
The costar operation, denoted by ‘#, is defined as f#=f-° where “f” is a conservative
unary operator.

Example 7: On The Costar Operation
Let f=4S3021=QK. The f# is obtained by taking the image of its inverse by its star.
Using Table 6, f-=4S3102 and f*=4S1203=Q9. Thus, the costar of a is

f#=f-U "=453102"451293=451032=Q8.

4 AOP Binary Operators and Operations
4.1 Prioritors

Boolean algebra uses the AND and OR as its binary operators. Post algebra
uses the MIN and MAX as its binary operators. AOP uses a more generalized set of
binary operators called “prioritors” as defined in Definition 14. This makes AOP a
multi-operational algebra. The AND, OR, MIN, MAX are a subset of the prioritors of
AOP. The number of prioritors in a z-radix digital system is equal to z! as we will
prove that later in this section. The number of prioritors is 2 in the binary digital
system, 6 in the ternary digital system and 24 in the quaternary digital system. Table
9 shows the number of prioritors for radices 2-31.

Before we define prioritors in AOP, we will reanalyze mathematically the

priority-assignment represented by the priority s-code. The priority-assignment
represents a one-to-one function that maps the priority set to the logic-set. The

11

domain of this function is the priority set and the range of the function is the logic-set.
Since xUpriority set and f(x)Ologic-set, then the function notation f(X) is read as the
digit that has the ‘x’ priority. For example, if f=4S3021, then f(1) is the digit that has
the "1" priority which is 2. Similarly, f(0)=1; f(3)=3; f(2)=0. Since one-to-one functions
are called unary conservative operators by AOP, then the X" notation is read as
the digit that has the ‘x’ priority or the image of "X" under "f'. For example, if
f=453021, then 1”"is the digit with a priority of "1" which is 2 or the image of 1 under
" which is 2. Similarly, 07 =1; 377 =3; 257 =0.

In AOP, we are interested in the priority of a given digit. Since the priority of a
digit is the position of that digit in the priority s-code, then we are interested in the
operator, which gives the priority of that digit as an image of the digit itself. That is, if
f=4S51023 and f(A)=B, then we want the operator, say "y", that gives y(B)=A or
Y(f(A))=A. Mathematically, "y" is called the inverse function of "f". In AOP, we call "y"
the conservative inverse operator of "f* and it is denoted by "f- . For example, the
inverse of f=451023 is f-=4S0132. Using the inverse operation, we can find the

priority of any digit from the inverse of the priority-assignment. For example, if
y=451023 then y=4S0132 and the priority of 0 is 0°Y =2; of 1 is 17¥=3; of 2 is 2"¥
=1; of 3 is 3”Y'=0. Table 8 lists the inverse of each priority-assignment under the "a-"

column for the binary, ternary, and quaternary systems. At this point we can
introduce the definition of prioritors.

AOP defines a prioritor as a processing system that defines distinct
priorities for all the logical values of its inputs (events) by its priority-assignment
and its output is equal to the input logical-value with the highest priority.
Mathematically, the prioritors of AOP are defined by Definition 14 as two-event
prioritors where we use the Greek alphabet "a" to refer to prioritors in general. Table
8 lists the prioritors of AOP for the binary, ternary, and quaternary systems by their
priority-assignment under the 'a’' column and by the function table under the ‘s-code’
column.

Definition 14: AOP Prioritors
A prioritor, denoted by "a", is defined as AaB={A if A" “*>B" *: B if A" *<B" %}

Definition 14 states that if "A" has a priority higher than or equal to the priority
of "B" then the result is equal to "A"; if "B" has a priority higher than or equal to the
priority of "A" then the result is equal to "B". In another words, the result of the "a"
prioritor is equal to the variable value with the highest priority.

Table 8 lists the function table of prioritors in the binary, ternary and quaternary
systems using a special coding system called the prioritors s-code. The prioritor s-
code identifies prioritors by a string of characters. It starts with the digital system
radix, 'S' suffix and the operator function table listed from right to left where after each
‘Z’ digits there is a separating colon to simplify reading the code. Figure 7 shows the
relation between the function table and the prioritor s-code using the
QF=4S3210:2222:1211:0210 prioritor.

The "a" symbol in AaB represents a binary operator, while in the unary image
operation, A” ', it represents the prioritor priority-assignment. For example, in the

12

quaternary system, let a=Q;. From Table 8, this "a" in AaB is
0=4S3210:2210:1111:0010 and in A® ~is a=4S1023 with an inverse of a'=4S0132.

Theorem 1: Number of Prioritors

The number of prioritors in a z-radix digital system is equal to z!.

Proof: By the priority principle all priorities must be distinct. Thus the assignments
of priorities to the logical-values of the logic-set or vise versa is a one-to-one
mapping process. For the "0" logical-value we can assign "z" priorities, for the "1"
logical-value we can assign "z-1" priorities, for the "2" logical-value we can assign "z-
2" priorities and for the i logical-value we can assign "z-i" priorities. Since each
priority assignment to each logical-value is independent from the other assignments,
then using the counting principle [14]p.3, there are z(z-1)(z-2)(z-3) *** 2*1=2! distinct
ways of assigning priorities to all the z-distinct logical-values. Hence, there are z!
distinct prioritors. Q.E.D. See Table 9, which lists the number of prioritors for radices
2-31.

Since a prioritor represents a binary operation then it has two parameters, 'A'’
and 'B', written in the form of AaB where ' a' is the prioritor symbol. Using a=Q1 in
Table 8, we have 003=0, 1a3=1, 2a3=2, 3a3=3, 00d0=0; and a=QO we have 003=3,
203=3, 001=1, 200=2, 101=1.

At the hardware level, prioritors are a general representation of digital gates.
They can pass and block data flow. The signal with the least priority, which is called
the prioritor infimum signal, is used to pass data out of the prioritor and the signal
with the highest priority, which is called the prioritor supremum signal, is used to
block the data flow.

4.2 AOP Operations

AOP Binary operations are operations that operate on prioritors. Some operate on
the priority assignment and some operate on the prioritor function-table.

4.2.1 Notations, definitions and terminology

In Boolean and Post algebras, we use the ‘+, [T or ‘s, [T symbols to stand for
the OR (MAX) and AND (MIN) binary operators. AOP uses the Greek alphabets as
symbols to stand for prioritors in its algebraic equations. In this paper, we use the a
symbol to stand for prioritors in general.

Each prioritor has an infimum digit and a supremum-digit, which are called the
prioritor switches. The infimum digit (a switch to open) allows the data flow to pass
through the output of its prioritor. The supremum digit (a switch to close) blocks the
data flow out the prioritor. This physical process at the hardware level is expressed
mathematically by AOP in the following definitions.

4.2.2 Infimum Operation

Definition 15: Infimum digit
The infimum digit of a prioritor operator, denoted by a”V, is a digit in the logic-set such that
a”VaA=Aaa”V=A.

13

The infimum operation of the a operator is read as “the infimum digit of a”
where “[0 V” is called the inferiority operator. Table 8 lists the infimum digit of all
prioritors in the quaternary, ternary and binary digital systems under the ‘o V!
column. Using Table 8, the infimum of a=QA is a"”" =0, of 0=Q5 is a”" =2, of 0=QE
is a”V=1, of a=Q1 is a” V=3, of a=QO is a"” =0. In Boolean algebra, the “0” digit is
the infimum digit of the OR operator (since 0+A=A). The “1” digit is the infimum digit
of the AND operator (since 1+ A=A).

4.2.3 Supremum-Operation

Definition 16: Supremum digit
The supremum digit of a prioritor operator, denoted by a® , is a digit in the logic-set such
that a® aA=Aa a® =a?

The supremum operation of the a operator is read as “the supremum digit
of a” where “[A ” is called the superiority operator. Table 8 lists the supremum
digit of all prioritors in the quaternary, ternary and binary digital systems under the
'a® ' column. Using Table 8, the supremum of a=QA is a? =1; of a=Q5 is a® =0; of
a=QE is a? =2; of a=Q1 is a® =0; of a=Q0 is a® =3. In Boolean algebra, the “1”
digit is the supremum digit of the OR operator (since 1+A=1). The “0” digit is the
supremum digit of the AND operator (since 0+ A=0).

4.2.4 Star Operation on Prioritors

The star and costar operations are the major unary operations in AOP that
operate on the priority-assignments of prioritors. Table 8 lists the star under the a*
column and the costar under the a# column of each priority-assignment expressed
by the priority s-code and by Q's, T's and B's codes for the quaternary, ternary, and
binary systems. These two operations are very important operations in digital
applications of AOP. They are used by STAS systems of AOP.

When we apply the star operation on a priority assignment of a prioritor, we reverse
(transpose) the order of its priorities. Thus, the star of a prioritor is a prioritor.

Example 8: On The Star Operation of Prioritors

In the binary system, for a=2S01 a*=2S10; a=2S10 a*=2S01. In the ternary
system, for a=3S012 a*=3S210; a=3S021 a*=3S120; In the quaternary system,
for a=4S0123, 0*=4S3210; a=4S3210, a*=4S0123.

4.2.5 Costar Operation on Prioritors

The costar of a STAS system always corresponds to the NOT operator in Boolean,
Post algebra and Kleenean algebras. It is very important operation in using prioritors
to design MVL flip-flop circuits.

Example 9: On The Costar Operation of Prioritors

Let a=4S3021=QK. The a# is obtained by taking the image of its inverse by its star.
Using Table 8, a-=4S3102 and a*=4S1203=Q9. Thus, the costar of a is

a#=0-" '=453102"*'**=451032=Q8.

14

5 AOP TAS systems

In the previous section, we presented the prioritors of AOP. These prioritors
form a complete family that has a complete set of algebraic theorems. These
theorems enable us to use prioritors in digital circuits design.

It is very important to find out these theorems to enable us design MVL circuits
using all prioritors. Assume we are going to pick up a pair of two prioritors to
determine all algebraic theorems that may exist between them. There are z!% pairs of
prioritors in a z-radix system. For example, Figure 8 shows all possible pairs
in ternary system. Lines show pairs of different prioritors and circles show pairs of
the same prioritor. For example, line "12" shows the (T1,T2) pair and line "36" shows
the pair (T3,T6). Circle "11" shows the (T1,T1) pair and circle "55" shows the pair
(T5,T5). So, the number of pairs is z1?=31°=36.

AOP partitions these pairs into z! groups, where each group is called a TAS
(Two-Operational Algebraic System). Thus, we say that AOP has z! TAS systems.
For example, there are 2 TAS systems in binary system, 6 TAS systems in ternary
system and 24 TAS systems in quaternary system.

5.1 Definitions

Definition 17: TAS BASE
Every TAS system has a unique base denoted by ‘Tt where Ttis a conservative unary operator.

Definition 18: TAS System
A TAS s defined mathematically as the set of all pairs of prioritors in the form of (a,a!)
where ' a!' is called the mate of ‘a’.

Definition 19: Mate Operation and Operator

For any prioritor, say @, that belongs to a TAS there exists a mate denoted by a! (read as
mate of a) and is defined as al=n®® where “!” is called the mate operator and “T0 is TAS
base.

Another operation that is related to a TAS system is the comate operation. The
"comate" operation generates a unary operator, say 'y', from a unary operator, say
'u', such that u” ¥=u!

Definition 20: Comate Operation and Operator

For any prioritor that belongs to a TAS system there is a conservative unary operator called a
comate denoted by a?and is defined as a?=a-*" (read as comate of a) and the “?” is called
the comate operator.

5.2 Terminology

If the base of a TAS is equal to the Down-Del unary operator then the TAS is called
an intrinsic TAS system (ITAS) otherwise it is called an extrinsic TAS system. In
each z-radix system there is one intrinsic TAS system that describes the intrinsic

15

properties of prioritors. When the base of a TAS is equal to the Up-Del unary
operator, we call it the STAR TAS (STAS) system.

When a TAS system exists in all radii it is called a global TAS and when it exists in
some and not in the others it is called a local TAS (LTAS).

The ITAS and STAS systems are global TAS systems. Thus the number of global
TAS systems is 2 and the number of local TAS systems is (z!-2) where 'Z' is system
radix. The binary system has no local TAS systems at all. The properties of Local
TAS systems serve as a selecting factor of one radix over the other.

When the down-del operator is paired with the base of a TAS system, e.g. ((1,1), we
call that pair the ancestor pair. All the pairs of a TAS system are called the
descendants of the ancestor pair.

5.3 TAS Codes

AOP identifies TAS systems by the s-code and index-code. The s-code of a
TAS is the same as its base s-code. For example, if the base is “4S1023” then the
TAS s-code is ‘4S1023’. When we sort all bases in alphanumerical order, each base
will have a unique index. The TAS index-code prefixes this index by "TASc' where 'c'
is a character that identifies the radix in use. For example the 451023 TAS has an
index code of ‘TASQ7’ because the “4S1023” has an alphanumerical order of '7' and
‘Q’ represents quaternary system.

5.4 TAS Systems

Table 10 shows the TAS systems in binary system. The two TAS systems are
TASB1 and TASB2. TASB1 is an extrinsic TAS, which generates the extrinsic
properties between the B1 (AND) and B2 (OR) prioritors. TASB2 is an intrinsic TAS
which generates the intrinsic properties of prioritors B1 (AND) and B2 (OR).

Table 11 shows the ternary TAS systems. There are six TAS systems, which are
TAST1, TAST2, TAST3, TAST4, TAST5 and TAST6. Each TAS has its own pairs.
For example, the TAST1 TAS has 6-pairs which are (T1,T6), (T2,T4), (T3,T5),
(T4,T2), (T5,T3), and (T6,T1). The operator listed beside each pair is the comate
unary operator. For example, the comate for the (T3,T5) pair in TAST1 is 'T4".
TAST1 is the STAS system and TAST6 is the ITAS system.

In this paper, we will concentrate only on the two global TAS systems, which
are the ITAS and STAS systems.

16

6 AOP THEOREMS

In this paper, we will only present all the theorems that are related to AOP
global TAS systems, which are ITAS and STAS systems.

6.1 Terminology

Intrinsic theorems are theorems that describe each prioritor as single entity. Such
theorems tell us the properties of each prioritor. Extrinsic theorems describe the
functional behavior resulted from the interactions between two prioritors. They
describe a pair of two prioritors as a single entity. For example, the commutation
property of a prioritor is an intrinsic property but the distribution property of a
prioritor is an extrinsic property because it describes the functional behavior of two
prioritors.

Global Theorems are theorems that hold true for all TAS systems and for all radii.
Local Theorems are theorems that do not hold true for all TAS systems and do
not hold true for all radii. For example, the prioritors of the binary system have local
properties that do not exist in other systems such as A+A™=1. Thus, such a
property is called a local intrinsic property. On the other hand Aa a™=a™ is a
global intrinsic property because it holds true for all prioritors and in all radii. An
empirical theorem is a theorem that does not have analytical proof but has an
experimental proof (tested for specific radii and for specific TAS systems over all of
its domain using computer software).

AOP has a large number of theorems?, thus the process of naming each theorem is
difficult. Therefore, AOP categorizes theorems into types to simplify the naming
process by using an index scheme. So, each theorem in AOP has a formula, name
and type. The formula spells out the action of the theorem. The name identifies the
theorem and the type classifies the theorem. When it is impossible to derive a name
for a property from its function or action we use the type and add an index to it. For
example, we say "absorption-Il theorem". The "absorption' is type and "Il or 2" is the
index. The basic types used so far by AOP are static, absorption, transfer, and
virtual.

A theorem is said to be a static theorem if one of its sides is constant. For example,
A+A"=1 is a static theorem. A theorem is said to be an absorption theorem if there
is at least one variable in one side that does not appear on the other side. For
example, Aa (Aa*B)=A is an absorption theorem. A theorem is said to be a transfer
theorem if one of its sides contains at least one orthogonal operator and the other
side does not contain any orthogonal operator. For example, A” 2¢” "7 "Cq (A g*
B)=AaB is a transfer theorem because the left side contains one orthogonal operator
and the right side does not contain any orthogonal operator. A theorem is said to be
a virtual theorem, if the removing of one term from one side does not change the
equality of the two sides and the same variables still exist in the equation as in the
original expression. For example, (AdA™) 1 (A a B) =(AaB) is called a virtual
theorem because the removal of the term "(AaA™)U" has no impact on the equation

8 Some of which I discovered and some is still undiscovered.

17

results and the same variables "A" and "B" remain in the equation. If we remove "a
(Aa*B)" form 'Aa (Aa*B)=A"' we get A=A, but the variables are not the same as in the
original expression. A term that can be removed from an equation and still has no
impact on the equation results is called a 'virtual term".

6.2

ITAS Intrinsic Theorems

The ITAS theorems of AOP are listed in Table 1.

Theorem 2: ITAS Theorems (19)
Table 1: ITAS Intrinsic Theorems

No Name Formula
] . Q0" =0|@)A”2=0|(5)0=0 |(7) O*=A
1 |Del-Del Properties)07 =A@ =A (6)a=n (8) A*=0
. a#-=o# a” " =qg*
2 |Costar-Star Properties J— T—
3 [Sequential Inverse Theorem® (fYy=y P T
4 |Sequential-Star Theorem (F7Y)x=f*Y
5 [Star-lmage Theorem a*=A" ¢
6

Comparison Theorem

(1)IfA<B - A" 2>B" %
(2)IfA>B - A" A< B 2

7 |Star Relative-Priority Theorem

(1)”:AD G-Z BD a- AD GDSBD alt
(2) IfAD G-SBD a- AD GDZBD alt

8 |Costar Relative-Priority Theorem

(1) |f AD a-ZBD a- AD aptd a-s BD ap0 -
(2) IF A" “<B” * » A" a#l) 0~ pO a

9 Mean Theorem

(1) A O A" 2 215(z-1)
(2) A A A" B< 15(z-1)

10/Generalized Mean Theorem

(1) (AaA” Y =9 >14(z-1)
(2) (Ald A” *H)T < 14(z-1)

11|Priority-Star Theorem

Aa*B={A if A" “<B"” *: Aif A" “<B" “}

12|Star-Theorem

o**=a

13/Infimum-Digit Theorem a”V=0" @
14/Supremum-Digit Theorem a M=(z-1)7 °
15|Inferiority Theorem a’VaA=A
16/Superiority Theorem a"*aA=a” "
17|ldempotence Theorem AaA=A

18/ Commutation Theorem AaB=BaA

19|Association Theorem

Aa(BaC)=(AaB) aC

® This is a well established theorem for 1-1 functions in the literature but rewritten using AOP notations

18

6.3 STAS Extrinsic Theorems

Unlike Boolean and Post algebras, the number of binary operations in AOP increases
very rapidly in the order of z!. Thus, AOP cannot provide a symbol for each
operation. Instead, AOP uses the II symbol as a global symbol toasﬁand for its

=
consecutive operations. For example, XjaX2aX30X, is written as "=l . There are
four parameters associated with the I symbol, which are the binary operation to be
repeated “a”, the counting index “”, the index-starting value “i=1", and the index end-

value “i=4"

This section lists all the global extrinsic theorems of the STAS system in Table 2.
The STAS system has the form (a,a*). Its base is equal to up-del (a) operator.
Theorem 21: STAS Extrinsic Theorems (12)

Table 2: STAS Extrinsic Theorems

No Name Formula
1 |Distribution Theorem Aa (Ba*C)=(AaB) a*(AaC)
2 |Absorption Theorem-| Aa (Ao*B)=A
3 |Absorption Theorem-ll (AaB)a(Aa*C)= (AaB)
4 |Absorption Theorem-III (AaA” Ha(Ba*B” “¥)=(AaA”~ %
5 |Star-Cyclic Theorem (1) a” "=a*V 2) a”V=g*- A
6 |Costar-Cyclic Theorem (1) a" A=g"VH o# (2) a”V=g" A o#
7 |Static Theorem AD 20t RaE B o = A
8 |Transfer Theorem-| AT 2o haB Ay (A o* B)=AaB
9 |Uniform Image-Scaling (AaB) =A o "B
10 |Substitution Theorem EI:[;_Z;E‘QWC:E‘QKCF
ozl ppe———
11 |Inferiority Substitution Jl]nﬁ}f =c
12 |Superiority Substitution Dj_]ijl}{_ﬂjwi ot

Table 8 lists the a and a* of the (a,a*) STAS systems in the quaternary, ternary
and binary digital systems. The first pair in Table 8 in each system corresponds to the
(MIN, MAX) in Post algebras which are (MIN,MAX)=(Q1,Q2), (MIN,MAX)=(T1,T6)
and (AND,OR)= (B1,B2).

6.4 LTAS Theorems

AOP is different from Post Algebra. AOP has many TAS systems that cannot be
covered in one paper. But here, | listed two LOCAL virtual theorems, which do not
belong to the STAS system. Table 3 lists two virtual theorems for LTAS systems of
binary, ternary, and quaternary systems.

19

Theorem 34: LTAS theorems (2)

Table 3: LTAS Theorems
No Name Formula
1 Virtual Theorem-I (AaA®) a! (A a B) =(AaB)
2 |Virtual Theorem-II |A a(A” ““a! B) =(AaB)

For the binary system, all the virtual theorems are satisfied and reduce to the
A+(A"'B)=A+B or A*(A” +B)=A*B in Boolean algebra. For the ternary system, the
virtual-l theorem exists in TAST4 and TASTS5. Virtual-ll theorem exists in TAST5. For
the quaternary system, the virtual-l theorem exists in TASTQH, TASTQI, TASTQM,
and TASTQN. Virtual-ll theorem exists in TASQN.

Post algebra did not show any theorem in MVL systems that is equivalent to
A+(A"*B)=A+B or A*(A” +B)=A*B in Boolean algebra. So, it is a remarkable
achievement by AOP to show that there are theorems in MVL systems that are
equivalent to such theorems.

The theorems of LTAS systems are very important in AOP. They enable AOP
to use the power behind its set of multi-operators in representing functions.

7 AOP Orthogonal Theorems™

Boolean and Post algebras offer only two representations for n-variable MVL
functions: sum-of-products and product-of-sums 24] p29-30 [9] p.95. Each
representation requires a maximum number of (n+1)z"" binary operations (MIN-MAX,
AND-OR) and a maximum number of nz" complementary functions {Cn(x) [4]}. For
example, for a two-variable function in the ternary system we need a maximum
number of (2+1)3°-1=26 binary operations {8 MINs & 18 MAXs or 8 MAXs & 18 MINs
[9]p.93} and 2*3*=18 complementary functions.

AOP extends and enhances the representations of MVL functions. It offers z!
distinct representations for MVL functions instead of two representations. The
sum-of-products and product-of-sums representations are just two representations
out of the z! distinct representations. For example, a MVL function in the quaternary
system can be represented by 4!=24 representations. AOP extends the
representations of MVL functions using two theorems called “Orthogonal Theorem-
I” and “Orthogonal Theorem-II”. Both theorems extend the number of
representations of MVL functions to z!. The z! distinct representations give designers
more alternate choices of representing MVL functions. It also enables designers to
select the representation which starts-off with the lowest number of prioritors just
before entering the minimization dilemma.

AOP enhances the notations of MVL function representations. Its notations
allow the use of well-organized and compact formulas that handle hundreds of
representations in high-radix systems. Before we present the orthogonal theorems of
AOP, we will consider the following notation, terminology, and symbols.

1% AOP has more complicated theorems to represent MVL functions other than the theorems of this
section.

20

7.1 Notations, Terminology and Definitions

In AOP, the domain of MVL functions is treated as a vector domain with z" vectors.
The notation f(up,...,uz,uq) is written as f(Xs) where Xs=(Xsp,...,Xs2,Xs1) and 's' is the
vector index in the domain. The values of the vector component Xs; correspond to the
values of the u; variables where 1<j<n.

In AOP, some of the values in the function table are called "trivial values". A trivial
value is the value that is equal to the supremum of the prioritor used to represent its
function. A term is all the repeated operations carried out by the a prioritor in the
representation. A term is called a trivial term if a trivial value appears in it. If there
are no trivial terms in the final representation, then we call it a start-off
representation. MRV is the most repeated value in the function table. NMRV is the
next most repeated value in the function table.

The following symbols are used in the statistical equations associated with the
orthogonal theorems I&Il. (1) 'A" is the number of a's in the representation. (2) 'd' is
the number of a*'s in the representation. (3) 'p' is the total number of prioritors in the
representation. (4) 't' is the number of trivial terms in the function to be represented
(5) ‘T is the number of non-trivial terms in the equation. (6) ¢ is the number of
orthogonal operators.

In AOP, we face situations where we have to count the number of occurrences
of a digit in the range set of a MVL function. The next definition defines a counting
operator that is used to express the mathematical formulas of AOP in a well-compact
form.

Definition 21: Counting Operator

Let “A” be a subset of the integer numbers and let 'c' be an integer number. The expression
A* is defined as the number of occurrences of the 'c' element in the A set where "#" is called
the counting oper ator .

Example 10: On Counting Operator

Let f(A, B)= ABB be a function in the quaternary system where f=Qg=4S1032=
483310:3210:1111:0010. The expression {f(A, B)}* =is the number of the
occurrences of '2' in the function range set which is '1'. For simplicity in notations, we
will treat the function symbol 'f' under the counting operator as its range set and
disuse the parenthesis. Thus f°=5, f=7, f*=1, f*=3.

7.2 Orthogonal Theorem-|

AOP uses the orthogonal theorem-l (Theorem 37) to represent MVL
functions. The orthogonal theorem-l requires a maximum number of (n+1)z""
prioritors and a maximum number of nz" orthogonal operators. For example, a 2-
variable MVL function in the ternary system can be represented by six
representations with a maximum number of 26 prioritors and 18 orthogonal operators
for each representation.

The sum-of-products and product-of-sums [4] p29-30 [9] p.95 representations
of Post algebras are special cases of the orthogonal-lI representations. Therefore, a
Post representation requires a maximum number of (n+1)z”'1 binary operators (MINs
and MAXs) and a maximum number of nz" complementary operators [5].

21

Theorem 37: Orthogonal Theorem-I

Theorem 7.1 Orthogonal Theorem-I: A MVL function of n-variables, say f(xs) where
Xs=(Xsn, ---» Xs2, Xs1), €an be represented by using the (a, a*) STAS systems and the
unary orthogonal operators as:

a*:z" a:n i o OV
m=1 =1
where the number of ...
(X/\D *7 H —_
1- trivial terms is t= F* 4-a*s s o=1-1 -
2- non-trivial terms is 1=zn-t 5-a'SiS .. A=nT-F*

3- orthogonal operators is ¢=nt v

o
6- All prioritors is P=A+d=(n+1)t-1-F*

The Post representations are a special case of orthogonal theorem-lI when a=MIN for
the sum-of-products representation and when a=MAX for the product-of-sums
representation.

7.3 Orthogonal Theorem-ll

AOP enhances the representations of MVL functions by the orthogonal
theorem-Il (Theorem 38). The enhancement is achieved by reducing the number of
prioritors needed for the representations of MVL functions than the orthogonal-I
representations by z". This makes the orthogonal-Il representations less complex
than the orthogonal-l representations. The orthogonal theorem-Il requires a
maximum number of nZ™" prioritors and a maximum number of nz" orthogonal
operators. For example, a 2-variable MVL function in the ternary system can be
represented by six representations using the orthogonal theorem-Il with a maximum
number of 17 prioritors and 18 orthogonal operators (see Example 11; notes that the
MIN and MAX are prioritors).

The orthogonal-Il representations of AOP to MVL functions are less complex
than Post representations by a maximum number of z" binary operations. Post
algebra does not have an equivalent theorem to the orthogonal theorem-II.

Theorem 38: Orthogonal Theorem-I

Theorem 7.2 Orthogonal Theorem-II: A MVL function with n-variables, say f(xs)
where Xs=(Xsn, -.., Xs2, Xs1), can be represented by using the (a, a*) STAS systems
and the unary orthogonal operators as:

a*:z" a:n 2
f(Xe)=TL I Xsj® Xmi @™ m)
m=1 =1
Where the number of 4-0%S S oo o=T1-1
oD -0’'si =(n-
1- trivial terms is t= F# 5-a’s |§ ISR RREEREEERIIER, A (n 1)'[
2- non-trivial terms is I=7n-t 6- All prioritors is P=A+d =nt-1

3- orthogonal operators is ¢=nt

22

7.4 AOP representations of MVL functions

How AOP represents a MVL function if given a specific STAS system? In this case,
we do the following steps: (1) Delete all entries in the function table which are equal
to a” * (2) Select orthogonal theorem | or |l for the representation. (3) Mark all entries
in the function table that are equal to a” ¥ if orthogonal theorem-I was selected. (4)
Transfer the function table into the selected orthogonal theorem as shown in
Example 12 and Table 15.

How AOP represents a MVL function if not given a STAS system? In this case, we do
the following steps to get the lowest start-off representation (Definition 22). (1)
Find the MRV and NMRYV from the function table. (2) Select a prioritor from Table 8,
say a, such that a” "=MRV and a" Y=NMRV. (3) Delete all entries in the function table
which are equal to the function MRV (4) Select orthogonal theorem | or Il for the
representation. (5) Mark all entries in the function table that are equal to the function
NMRYV if orthogonal theorem-| was selected. (6) Transfer the function table content
into the selected orthogonal theorem. The marked values will not appear in the
orthogonal-I representations because they are the infimum of a and are irrelevant to
the orthogonal-Il representation. See Example 12 and Table 15:

7.4.1 Lowest Start-Off Representation

The lowest start-off representation does not mean the minimum
representation. Further steps have to be carried by the theorems of AOP to get a
minimum representation.

Definition 22: Lowest Start-Off Representation

A representation is called the lowest start-off representation if the supremum of the prioritor
used to represent the function is equal to its MRV and the infimum is equal to its NMRV.
That is a” "=MRV, a"” Y=NMRYV.

7.4.2 Examples of MVL functions

Example 11: On MVL representations by AOP
In [9] p. 92-93 the ternary function

example f(u,v) is represented by (uﬁ—euenfi(en,enjiv—ﬁenenf(en,euj)
the sum-of-products in p.93. Let's A . A

represent the example using the ﬂg —eyegfley ep) ® yhegegfle. el
orthogonal theorem-Il of AOP. Hyq—tie e fie., e) ® e fle, e
From H1, we get a=[F+=MIN, CARCE AL

a*==+=MAX, and the logic- Hyg~fegegtley, &)) @ yde egfley, e

set={eo, €1, ez}. From H2, by the f{u,v)=

infimum theorem a” Y=e,, a*” V=0 +(H_ﬁelﬂﬂﬂiel’ ep) & yheegfley. e)

by the star-cyclic theorem a"”=a*” Hybeepfles o) @ yle egfle, &)
V- *0 A=y 0 V= T

=gp and a*" "=a" *=ey. Thus f(u,v) T N W
can be represented in AOP by the W0ty) * vhef o 2)
grtrogor_;_ill theorem—ltl t_as hIisteg Hy e egfie). ey) ® ybegegfie). e
elow. This representation has - _

MINs and 8 MAXs compared to 18 HuRegegfleg £) @ yRegspieg. ep)

MINs and 8 MAXs by Post algebra.

23

Example 12: On Orthogonal Theorems-I1&ll

Let f(u,v) in Example 11 be f(u,v)=upv where =T,=3S120=3S212:111:210 and the
logic-set={0,1,2}. From the function table, MRV=1 and NMRV=2. Using Table 8, we
select 0=T3=35102 since T5” "=MRV and T5" Y=NMRV. Thus, the representation by
orthogonal theorem- is f(u,v)=(Oau" 240 qv~ 28280 q*(y" 2210 gyt 4212 g*(y- 4212
av” 2Oq*(y" 4212 gyt 4212 \with 8 binary operations and 8 orthogonal operators and
no NMRYV values are appearing in the representation. The representation by
orthogonal theorem-lIl is f(u,v)= (U2°*° av” 2%)o* (U220 qv? 2g*(uB??

av220)o*(u?2 av®?12) with 7 binary operations and 8 orthogonal operators. See
Table 12. These representations can be minimized using the theorems of AOP. For
example, using the substitution theorem we reduce the last two terms and get f(u,
v)=(0au® 2210 gy 4210 qx(o 4210 gy R 2 B21Z o BIZL) for the orthogonal-I
representation and f(u, v)= (u” %% av"” 2°%)a*(u" 2210 av®#2 Ya*(u” P2 av?® 2 for
the orthogonal-Il representation. Further steps are needed to reach a minimum form.

8 AOP EXPANSION Theorems

AOP extends and enhances the expansions of MVL functions by two
theorems called “Expansion Theorem-I” and “Expansion Theorem-II”. Both
theorems extend the number of expansions of MVL functions to z!. For example, a
MVL function in the quaternary system can be expanded by 24 expansions. The
enhancement in expansion theorem-ll is achieved by reducing the number of
prioritors by ‘Z'.

8.1 Expansion Theorem-| and Il

Theorem 39: Expansion Theorem-|
A MVL function of one variable in a z-radix digital system can be expanded by using
the (a, a*) STAS systems and the orthogonal operators as

o*:z-1
fx)=II (f(m)a X2 ma?
m=0

)

Theorem 40: Expansion Theorem-Il
A MVL function of one variable in a z-radix digital system can be expanded by using
the (a, a*) STAS systems and the orthogonal operators as:

a*:z-1
f(X)= I[Xm m ol f(m)
m=0

Due to the limited space, Example 14 shows only four expansions of a quaternary
variable out of the 24 expansions by the orthogonal theorem-I. The first expansion is
the sum-of-products by Post algebra. Also Example 15 shows four expansions of a
quaternary variable out of the 24 expansions by the expansion theorem-II.

24

8.2 Variables Expansion

Example 13: On Variables Expansion | & Il
Using the expansion theorem for f(X)=X, any variable in AOP can be expanded by
using the (a,a*) STAS systems and the orthogonal operators as:

ol f otm-1 "'|
o e —fth o

}FH:D(mOLK_ﬁm J F]I:E:D B A (1)

The variable expansion in Post algebra defined in axiom-3 by Epstein in (5) is a
special case of the expansion in (I) when a=MIN and a*=MAX.

Example 14: On Variable Expansion-|
Using the expansion theorem-I, we can expand a quaternary variable by the following
expansions:

-A103

a=Q1=MIN, 0*=Qp=MAx x= (1 a x21%) o*(2 a x229%) q*(x 230
a=Qs, 0*=Qn x= (0 a x*?)a* (x*1%) a*(3 a %2
a=Qp, a*=Q_ x= (0 o X2P)a*(1 o x21P)a* (x2329)
a=Qx a*=Qg %= (0 o X293)or*(X131)o*(2 o x2231)

Example 15: On Variable Expansion-Il
Using the expansion theorem-Il, we can expand a quaternary variable by the
following expansions:
a=Qy, 0*=Qo x= X" a*x-22% a* XM a=Qp, a*=Q, x= x*%%a* x*1? g* x4
0=Qg, 0*=Qy x=x"" a*x? a* x™"°, a=Q, a*=Qg x= x2%% a* x*"*" a*xt*?

9 AOP Image-Scaling Theorem
9.1 Binary and Priority-assignment image operations

The Priority-assignment image operation, denoted by the symbol '0"', operates on
variables and on the priority-assignment of a prioritor. For example, a”" means

that this operation is to operate on the priority-assignment of the “a” prioritor not on
the prioritor itself.

Definition 23: Priority-assignment Image operation
The priority-assignment image operation, denoted by “” 7, is defined as a” "= (priority-
assignment of)"

The binary image operation, denoted by the symbol '=', operates on variables and
on the prioritor itself not on its priority-assignment.

Definition 24: The binary image operation
The binary-image operation, denoted by 0=, is defined as =" =f(function Table of).

25

The binary image operation and priority-assignment image operation are different
and not comparable when they operate on a prioritor because the first results in a
unary operator while the second results in a binary operator. The relation between
the two operation is given by (AaB)="=Aa—" B=(Aa B)D f

Example 16: On Prioritors Images Operations

In the quaternary system, let f=4S1302 and a=Q,;=4S3012=4S3333:3210:3110:3000.
Using the priority-assignment image operation a” " is 4s3012”**'**=4s51203. Note that
“f” operated on the priority-assignment “4S3012” not on the prioritor
“4353333:3210:3110:3000". Using the binary image operation oa=*
=(453333:3210:3110:3000)~*5"%%2= 451111:1302:1002:1222. Note that both results
are completely different and incomparable.

9.2 Uniform Image-Scaling Theorem

When we take the image of a binary operation using the NOT or MV-NOT
operator in Boolean and Post algebras, we use DeMorgan's laws to break out the
image operation. The DeMorgan's laws work only for the NOT and MV-NOT
operators. What about if we take the image of a binary operation, say MIN, by using
a one-to-one unary operator, say f=4S3012, other than the MV-NOT operator (see
Example 18)? Post algebra does not provide the means in this case to break the
image operation. AOP solves this problem by replacing DeMorgan's laws by a new
theorem (Theorem 41) called the "uniform image-scaling (UIS) theorem" which is a
special case from the General Image-Scaling Theorem.

Theorem 41: Uniform Image-Scaling (UIS) Theorem
The image of the binary operation AaB of the 'a’ prioritor under a conservative unary
operator 'f' is given by

(AGB)D f=AEIfaEIf BEIf

9.2.1 Examples On Uniform Image-Scaling Theorem

Example 17 shows how to break up the image of the MIN binary operator under
the unary operator f=4S3012. Other similar results are shown in Example 21 where
“00 7 by default stands for the NOT (2S01) operator in the binary system and MV-NOT
in MVL systems.

Example 17: On Uniform Image-Scaling Theorem (QJ,4S51302)

In the quaternary system, if we let f=4S1302 and a=Q;=4S3012=453333:3210:3110:3000,
then (A assor B) 4S1302=p0 481302 o0, 0481302 BUASIS02. (A 4oy,) 481302270 481302
as1203 BP*51392 According to the UIS theorem, the image on the left side in “(A a
B)"™ is taken on the final result not on the priority-assignment of a, or it is taken on
the function table of o as shown in “A a— B”. That is (A a B)™*°"3%2=(A oq—*513%2 g)
=ABB where P=(Qu=453333:3210:3110:3000) > °0%= 4s51111:1302:1002:1222. On the other hand,
the image operation on the right side is taken on the priority-assignment of a. That is
453012” 4913%%=451203=Qq. Assume A=2 and B=3, then (2 4s3012 3)" *571302=1 451302 ;5153

3D 4S1302; 3I:I 4S1302=3 451203 1’ 1=1.

26

Example 18: On Uniform Image-Scaling Theorem (Q1=MIN,4S3012)

Using Table 8 and Table 14, the image of the binary operation AaB for
a=Q;=MIN=450123 and f=4S3012 is (A a B)" "= A""a""B" = A“B B"" where p=a""
=0 '=480123"495%012=482103=Q¢. See Table 13, which shows the function table of
this example.

Example 19: On Uniform Image-Scaling Theorem (Q1,4S0123)
In the quaternary system, let f=4S0123 and a=4S0123.

(A 450123 B)D 480123 _ AIZI 480123 4SO123D 480123 BD 450123

(A 450123 B) #50123= AU 450123 455, BI 450123
(A iy B)P 40123 AT 480123 g 450123
(AwmnB) =A max B using default notation where MIN=Q1 and MAX=Qq in Table 8.

Example 20: On Uniform Image-Scaling Theorem (T1,3S012)
In the ternary system, let f=3S012 and a=3S012.

(A 35012 B)EI 38012 ='A‘IZI 3S012 38012IZI 3S012 BIZI 3S012

(A 35012 B)” 38012=p0 38012 5 g 38012

(A MIN B)D 3S012 =AD 3S012 MAX Bl] 35012

(A MmN B) =A" maxB™ using default notation where MIN=T; and MAX=Tgin Table 8
9.2.2 Deriving DeMorgan's laws by AOP

Example 21: On Deriving DeMorgan's Laws from UIS theorem

Since AND" '=2501” 2'=2810=0R and OR" '=2510"%*"'=2501=AND when f=2S01,
then we obtain (A ano B) = A or B and (AorB) =A ano B, which is DeMorgan’s
law in Boolean algebra. Since MIN® =MAX and MAX" =MIN when f=A, then we
obtain (A max B) = A mn B and (AmnB) =A wmax B, which is DeMorgan’s law in
Post algebra.

10 AOP UNIFORM DEGENERACY
10.1Notations and Terminology

The following AOP notation will be used in the following sections. In mathematics, we
usually consider variables to be the only parameters of functions. Thus, we specify
these variables in the function heading. For example, the f(x) notation means X’ is a
variable parameter and the f(x,y) means ‘X’ and ‘y’ are variable parameters. Because
AOP is a multi-operational algebra, we extend the notation to specify variables,
operators and constants as parameters in the function heading and at the same
time use sets notations to specify such parameter. For example, assume we have
the following Boolean function G(A,B,C)= (A+B)*(A+B)+A*C+(1+C)*(B+0). In AOP,
we write this as G(X,a,C) where X={A,B,C},a={+,"}, C={1,0}. Thus, in G(x,qa,c)
notation (1) ‘X’ is the set of all variables used in the function. (2) ‘a’ is the set of all
prioritors used in the function. (3) ‘C’ is the set of all constants used in the function.
(4) ‘G’ A function whose range is determined by a set of variables 'x' and a set of
prioritors 'a' and a set of constants 'c'.

27

Definition 25: Priority functions and Priority equations
A function or an equation is said to be a priority function or equation if and only if all of its
binary operators are prioritors.

10.2Uniform Degeneracy of Prioritors

Based on the "duality” concept, in Boolean and in Post algebras, we say that
the dual of MIN is MAX and the dual of AND is OR and vise versa. AOP extends the
duality concept into a broader scope under the concept of "uniform degeneracy'™.

The uniform degeneracy of prioritors is defined in Definition 26.

Definition 26: Uniform Degeneracy of Prioritors
The uniform degeneracy of a prioritor (descendants) is defined as the image of its priority-
assignment under a conservative unary operator, say f, and is denoted by "o°™.

offf _p—f . . o .
Mathematically, & T =0 where aisthe image of the priority-assignment of a under
“f” NOT the image of the function table of a under “f” and “offf ” is called the uniform
degeneracy operator.

Example 22: On Uniform Degeneracy of Prioritors
For example, let a=Q;=4S1023 and f=4S51023. By Definition 26, a°™ = 451023-*%'%°=
452301=Qn. Thus, we say that the uniform degeneracy of a=Qy7 is Qn.

Table 14 lists all the ‘o°™ uniform degeneracy operations of all prioritors under
all conservative unary operators in the quaternary, ternary and binary systems. To
find the uniform degeneracy of a prioritor under a conservative unary operator using
Table 14, locate the row that contains the prioritor and the column that contains the
conservative unary operator, which is listed in a vertical direction. The intersection of
the column and row is the prioritor number that represents the uniform degeneracy. If
the number is in the quaternary system, then add the “Q” prefix; in the ternary system
add the “T” prefix, in the binary system add the “B” prefix. Finally, use Table 8 to
determine the function table of the prioritor found.

Example 23: On Using Uniform Degeneracy Table

The uniform degeneracy under f=4S3021 of a=Qy prioritor is Qy°"=Qs (The
intersection is “5” and the prefix is “Q”). The uniform degeneracy under f=3S021 of
a=Tj prioritor is T30fff=Tg (The intersection is “6” and the prefix is “T”). The uniform
degeneracy under f=2S01 of a=B prioritor is B1°"=B,. (The intersections “2” and the
prefix is “B”).

Example 24: On Uniform Degeneracy of Q1 and QO

The uniform degeneracy of a=Q4 (MIN) under f=452301 is Q1°"=Qg, of a=Q; (MIN)
under f=450123 is Q:°™=Qo, of a=Qo (MAX) under f=450123 is Qo""=Q; and of
a=Q4 (MIN) under f=451032 is Q1""=Qj.

1 AOP can extend the number of degenerate MVL equations in a z-radix system up to z"* by using its
concepts of “Non-Uniform Conservative Degeneracy”.

28

Example 25: On Uniform Degeneracy of B1 (AND), B2 (OR)

In the binary system, under f=2S01, the uniform degeneracy of the AND operator (B+)
is the OR operator (B;) and the uniform degeneracy of the OR operator (B;) is the
AND operator (B1). That is AND°"=0OR and OR°"=AND.

Example 26: On Duality from AOP Degeneracy

The duality theory is a special case of the uniform degeneracy theory of AOP. The
dual operation in Boolean and Post algebras is the uniform degeneracy under
the up-del “A” conservative operator. For example, in the quaternary system
f=A=4S0123 and MIN=Q4=4S0123, thus the dual of MIN is MIN°"=450123"4%%'%*=
4S3210=Qo=MAX. In the binary system f=A=2S01, thus the dual of AND is

AND°"=2501" ?**'=2810=0R.
10.3Uniform Degeneracy of Priority Functions

The duality of functions in Boolean and Post algebras is extended by AOP
under the concept of "uniform degeneracy of functions" as defined by Definition
27.

Definition 27: Uniform Degeneracy of functions

The uniform degeneracy of a priority function, say G(x,0,c) , under a conservative unary
operator, say ‘f’, is obtained by taking the uniform degeneracy of each prioritor in the
function and by taking the image of each constant using the ‘f* conservative operator where
the variables of the function remain unchanged. Mathematically

G(X,G ,C)Offf =G(X,aOfff,CD f)

The expression “G(x,a,C)°™ is read as the uniform degeneracy of the function G.
According to Definition 27, we have to take the uniform degeneracy of each prioritor
and take the image of each constant and leave all variables untouched. The
statement is translated symbolically as G(X,a°".c”"). This means that the "™ " uniform
degeneracy is to operate on all the prioritors of the set 'a' and the '] f' image operator
is to operate on all the constants of the set 'C".

10.3.1 Examples on Uniform Degeneracy of Priority Functions

Example 27: On Uniform Degeneracy of functions without constants
Let g(X,a,C)=Aa(Ba*C). The “°™ uniform degeneracy of g(X,a,C) is g(X,a,C) °™ =A
a °fff (Ba* offf Q).

Example 28: On Uniform Degeneracy of functions with constants

Let G(X,a,C)= (A+B)*(A+B)+A*C+(1+C)*(B+0) where x={A,B,C},a={+,*}, and C={1,0}.
Using the uniform degeneracy definition, G(A,B,C)*"=G(X,a°",C")= G({A,B,C}.{+,*}
offf,{1 ,O}Df)= G({A,B,C},{+°ﬁf,*°fﬁ},{1 Df’o Df})= (A+offf B)* offf (A+offf B)+ offf A* offf C+offf (1 of +offf
C)* offf (B+offf 0 Df).

Example 29: On Uniform Degeneracy of functions with constants
Let a=Q4 (MIN) in the quaternary system and let g(X,a,C)=Aa(2a*B). The set of all

variables in the function is X={A, B}, the set of all constants in the function is C={2},
and the set of all prioritors is a={a, a*}. The “°™ uniform degeneracy of g(X,a,C) is

29

given by g(X,a,C)°"=A o ° (287 a* °™ B). In this example, we took the uniform
degeneracy of each prioritor and took the image of the constant '2". If we let
f=450123, we get g(X,a,C) °™ =A max (1 min B) or g(X,a,C) °™ =A+(1+B)=A0 (1[B)
using Boolean and Post algebra notations.

Example 30: On Uniform Degeneracy of functions with constants

Let a=Q4=MIN in the quaternary system and let g(X,a,C)=(Aa(2a*B)a(Ca*3))a*(0aC).
The “°"™ uniform degeneracy of g(X,a,C) is given by

g(X,G,C) offf =(Aa0fff (2|:|fa* offf B)aofff (Ca*offf 3|:| f)) a*offf (OD fGOfffC).

If f=4S1302, we obtain g(X,a,C) °" =(AQ:(32:B)Q:(CQs1))Qs(2Q:C). Note that a°"=
Q1°=4S50123"%"?= 452031=Q and a**"=Qu""=MAX°"=453210"*"*?=451302=Q.

Theorem 42 shows another important theorem in AOP. This theorem gives us
another way of obtaining the uniform degeneracy without using Definition 27.

Theorem 42: Uniform Degeneracy Equivalence Theorem

The uniform degeneracy of a priority function, say G(x,a.c), under “offf” , where f’ is a
conservative unary operator, is equivalent to taking the image of the entire function
and the inverse image of each variable in the function. Mathematically:

Gx,a,c)=6x""a,c)"

Example 31: On Uniform Degeneracy Equivalence Theorem
Let g(X,a,C)=Aa(Ba*C).
f-\ O f

G(XIZIf-,a’C)IZIf={AIZIf-a(BDf-a*CD N

A0 fGOfﬁ(BDf-Df o o oo+ f) By using the uniform image
scaling theorem

=Aa”B a*" C) By using f-" =0

=G(X,a,C)"" Which is the uniform

degeneracy of “G”

Example 32: On Uniform Degeneracy Equivalence Theorem with constants
Let g(X,a,C)=Aa(2a*C).

(X" 0,0)" =" "aarc” Note that operators and constants are not
affected.
A o o g By using the uniform image scaling theorem
=Aa”"2" a**" C) By using f "=

=G(X,a,c)™" Which is the uniform degeneracy of “G”

10.4Uniform Degeneracy of Priority Equations

The “duality” theory in Boolean and in Post algebras states that out of every
equation we can generate one equation, called the “dual equation”, with the same
variables but with different operators and constants. For example, in Boolean
algebra, the dual of an equation is generated from an equation by substituting an
AND for OR, an OR for AND, 0 for 1 and 1 for 0. AOP extends the duality theory
by its degeneracy theory. AOP states that we can generate z! equations from any

30

given equation with the same variables but with different operators and constants.
Each generated equation is called a “child-equation” or “descendants” and the
original equation is called the “parent-equation”. For example, we can generate 24
equations from a MVL equation in the quaternary system by AOP (see Example 34)
but on the other hand we can generate only two equations by Post algebra. AOP in
this example extends the number of equations to 24 equations 12V, Theorem 43
‘Equations Uniform Degeneracy Theorem” is the mathematical statement of AOP
degeneracy of equations.

Theorem 43: Equations Uniform Degeneracy Theorem
The uniform degeneracy of both sides of a priority equation in a z-radix digital
system are equal and the number of uniformly degenerate equations is equal to z!.

That is, if G(X,c,0)=H(X,c,a) then G(x,c,a)°"™ = H(x,c,a)°"

Example 33: On Uniform Degeneracy of A+(B+1)=1

In Boolean algebra the dual of A+(B+1)=1 is A¢(B*0)=0. In AOP, the uniform
degeneracy of A+(B+1)=1 under the unary f=2S01 (NOT) is “A+°"(B+° 101)=107~.
Using Table 8 and Table 14, + ° =B, °" =B,=AND=+ and 1" 7=0, we get A«(B+0)=0,
which is the same result obtained by the dual operation.

Example 34: On Uniform Degeneracy of Equations with constants

In the quaternary system, let a=Q¢ =MIN. The uniform degeneracy of the 2a
(Ba*C)=(2aB) a*(2aC) MVL equation is given by 2° Ta®™(Ba**"C)=(2° "a°™ B)
a*°™(20 Tq°™MC). If f=4S2301, then we obtain 3q,(Ba.C)=(3a2:B)a«(32:C). Note that the
Qs and Q4 form a STAS system that satisfies the distribution theorem. Also, note that
a°"=Q°"=450123"*5%*"'=451032=Qg and a**"=Q,"=
MAX=483210"%*%'=482301=Qp.

Example 35: On Uniform Degeneracy of Distribution Theorem for z=4

Given this parent-equation "A0BUC)=(AB)J(AUC)" in Post algebra notation, give
all the 24 degenerate equations (child-equations) in the quaternary system where
[(FMIN and CFMAX. Using AOP notation, we can express AL(BOC)=(AOB)ALC) as
Aa1(B aoC)=(A a:B)ac(A o:C) where FMIN=Q1 , (FMAX= Qo. The 24 degenerate
equations are listed in Table 15. The index of each a represents the prioritor number
as listed in Table 9. For example, a7=Q7, ay=Qu ...etc. Note that the 24 uniform
degeneracy operators are obtained directly from Table 14 by picking all the prioritors
in a row. For example, for the z! degeneracy forms of Q4 we pick its row in Table 14
which reads "OIMCGA-NHKG6E4-LBJ582-F9D371" and the same for Qo which reads
"123456-789ABC-DEFGHI-JKLMNQO". Note that the first equation is the dual of the
given equation in Post algebra. This shows that the dual operation in Boolean and
Post algebras is equivalent to the uniform degeneracy under the “A” operator. Also,
note that equation No 24 is equal to the given equation, because the uniform
degeneracy of any equation under the “[1” operator is equal to the equation itself.

12 The main reason for not adapting the same "duality" term is because duality implies "two" while
uniform degeneracy implies two or more.

31

11 Design Examples

In this section, | will present two design examples using the traditional operators
and using AOP operators and then compare the design results.

11.1Design of Ternary Multiplication Operation

The major operations in our lives are the basic arithmetic operations: addition,
subtraction, division and multiplication. In this example, | will provide different designs
for the multiplication operation in ternary system using AOP and Post algebras
and then compare the design results. The function table for the ternary
multiplication operation using s-code notation of AOP is 35120:210:000.

11.1.1 Ternary Multiplier Design Using Post algebra

Example 36: Ternary Multiplier Design using Post algebra

Post algebra uses traditional operators MIN,

MAX, MV-NOT, Cy(x), C4(x) and Cz(x). Using

Post algebra notation and its representation of

functions, we get the following "sum-of-products” @*'.‘@ [CiE]
equation (where:*=Min, +=MAX) A*B= (1* C4(A)*

C1(B))+ (C4(A)"C2(B))+ (C2(A)* C4(B))+ (17
C2(A)"C2(B))

This Post algebra representation uses 9 binary
operators (6 MIN, 3 MAX), and 8 unary operators ey
(complementary functions). The corresponding

circuit for this equation is shown in Figure 1. The Figure 1: Ternary Multiplier By Post
"product-of-sums" representation uses 15 binary algebra

operators (9 MIN, 6 MAX), and 14 unary

operators (complementary functions).

11.1.2 Ternary Multiplier Design Using AOP Orthogonal Theorem-|

Before we starts the design of multiplier in AOP, here are AOP operators for ternary
system.

The multi-operations used by AOP in the ternary system

1. Conservative unary operators T1, T2, T3, T4, T5 and T6. (see Table 8)
2. Orthogonal operators: 30001, 32002, 3Q010, 3Q012, 3Q020, 3Q021, 3Q101, 3Q102,
30110, 3Q112, 3Q120, 3Q121, 3Q201, 20202, 3Q210, 3Q212, 30220, 30221

3. Prioritors: T1, T2, T3, T4, T5 and T6. (see Table 8)

In ternary system, AOP has a total of 30 operations: 24 are unary operations (out of
3%=27 unary operations) and 6 are binary operations (out of 3%=19,863 binary
operations), which are its prioritors. The traditional binary operators by AOP notations
are T1 (MIN), T6 (MAX) and for unary operators are T1 (MV-NOT), T6 (identity
operator), 3Q002 for Cy(x), 3Q102 for C4(x) and 3Q202 for Cy(x).

32

Example 37: Design using AOP Orthogonal Theorem-I

The orthogonal theorem-I is similar in format to Post representations except it is
generalized to cover all the binary and unary operations of AOP. The MRV (most
repeated value) in this table (35120:210:000) is “0”. Thus we select a prioritor whose
supremum-digit is equal to zero. The NMRV (next most repeated value) in this table
(3S120:210:000) is ‘1" and 2'. Since we have two values for NMRV, we may select a
prioritor with '2" infimum-digit or with '1" infimum-digit.

The prioritor with the 1-infimum digit and O- A@r—]
supremum digit is T2. Thus, we have a=T2,

102
[+

a™ =0, a™ =1, a*=T4. According to this, one of g2
the best STAS systems to represent this function [0
which will start-off with the lowest-representation e

(not minimum) is (T2,T4).
On the other hand, the prioritor with 0-supremum Figure 2: Ternary Multiplier By AOP
digit and 2-infimum digitis T1 (MIN). Orthogonal-|

Thus, a =T1, a ™ =0, a™™ =2, a*=T6 (MAX). According to this, one of the best STAS
systems to represent this function which will start-off with the lowest-representation
(not minimum) is (T1,T6). Let's just use the (T1,T6) STAS system. By substituting in
orthogonal theorem-| of AOP we get

A*B= (1a Am 102 a Bm 102) G*(Am 102 a Bm ZOZ)G*(Am 202 a Bm 102)a*(1a Am 202 a Bm 202)
Using AOP short-notation®® we get

A*B= (1a A102 a B102)a*(A102 o BZOZ)G*(A202 o B102)G*(10(A202 a BZOZ)

Note that this representation by AOP for this specific example is the same as of Post
algebra. It uses 6 T1 (MIN) and 3 T6 (MAX). The corresponding circuit for this
equation is shown in Figure 2 using AOP notations for circuits.

11.1.3 Ternary Multiplier Design Using AOP Orthogonal Theorem-l|

Example 38: Design using AOP Orthogonal Theorem-ll

We will use the same STAS system obtained by orthogonal theorem-I, but we
substitute in orthogonal theorem-I| to get the following equation:

A*B= (Amlol a Bm 101)a*(A|Zk 102a Bm 202)a*(A|Zk 202 aBml OZ)G*(AEA 201GB|ZB 201)
Using AOP short-notations we get

A*B= (A101 a B101)a*(A102a BZOZ)G*(AZOZ GB102)G*(A201 a 8201)

13 Where "2 operator is deleted and only left three digits.

33

This representation is different from Post algebra
representation and AOP orthogonal-|
representation. It uses 4 T1 (MIN) and 3 T6 (MAX).
The corresponding circuit for this equation is shown
in Figure 3.

Figure 3: Ternary Multiplier By AOP
Orthogonal-Il

11.1.4 Ternary Multiplier Using AOP multi-operational set of basic

operators

If we were to think of a different circuit for the above example, other than the one
provided by Post algebra representation, then we would find it is impossible to use
the MIN, MAX and MV-NOT to design such a circuit. Even the Post algebra
representation used the complementary functions to get the job done.

Example 39: Using AOP multi-operational set of basic operators

Consider the circuit of Figure 4, which is drawn
using AOP symbols for digital circuits. This circuit
contains three prioritors labeled a, (3, and p and
two conservative unary operators labeled “f” and

y” and it represents the ternary multiplication sB=(aeBNuiE g B
operation A*B= (AaB""u (A" YBB) o8 uta g

Figure 4: Ternary Multiplier By Multi-

A solution to this circuit, based on AOP multi- Operation set of AOP
operators set, was carried out and gave 13

distinct_circuits. A few are presented iq Table-14 Table-14

to the right. In comparison to the previous S
circuits, this circuit uses three prioritors (like No @ B H f Y

saying 3 MIN) and two conservative unary
operators (like saying 2 complementary functons 1 T3 T3 T5 T4 T4
or two orthogonal operators). By using AOP
theorems, we obtain A*B= (AuB)a(AaB)" where 2 T1 T1 T2 T4 T4
0=T1, u=T2,and f=T4. This reduces the circuit
to two binary operators and one unary 3 T1 T4 T2 T4 T3
operator.

4 T4 T1 T2 T4 T4

11.1.5 Design Comparison

Table 4 shows a summary of all designs obtained by AOP and by Post algebra. For
the sum-of-products, AOP cuts the binary operators using its multi-operations by 66%
and the unary operators by 87.5%. For the products-of-sum, AOP cuts the binary
operators using its multi-operations by 80% and the unary operators by 92.85%.

The use of multi-operators of AOP gave us the highest reduction. So, from an
engineering point of view, we would choose the design of Example 39 because it is
less complex, has low power consumption, has less propagation delay, has higher
speed, and uses less chip space than the other designs. From a managerial point of
view, we would choose the design of Example 39 because it is more economical in
terms of cost.

34

Table 4: Design-l Statistics and Reduction Percentages

Multiplications Operations

Design Methods By Sum-of-Products By Product-of-Sums

By 9 8 15 14
No. AOP Prioritors Binary Unary Binary Unary

1 Orthogonal-| 9 8 9 8
Reduction 0% 0% 40% 42.85%

2 Orthogonal-Il 7 8 7 8
Reduction 22.22% 0% 53.33% 42.85%

3 Multi-Operational 3 1 3 1
Reduction 66.66% 87.5% 80% 92.85%

Let's take a few of the solutions as shown in Table-14 above and discus them. In
entry “1”, we can use T3, and T5 prioritors and T4 conservative operator. Entry 2-1
shows another configuration. It uses T1 and T2 prioritors and T4 conservative
operator. This entry shows how T2 and T4 cooperate with the traditional operator T1
to get the job done. The same can be said for the other entries.

It is impossible to design the circuit of Figure 4 using the traditional operators of Post
algebra. Thus, an engineer who relies on Post representations and has a solid
faith in its traditional operators will never come up with such a circuit and will
have only the circuit we obtained in design of Example 36 which is more
complex.

11.20ne More Design of 35201:001:111 operation
11.2.1 Design of 35201:001:111 Using Post algebra

Assume we are given a two-variable AAB 0 1 2
function with a function table given by s-

code as A=3S201:001:111 (shown to 0 1 1 1
right). First we will represent the function 1 1 0 0
using Post algebra and then using AOP. 2 1 0 2

Example 40: Design of 35201:001:111 Using Operation using Post algebra

Assume we are given a two-variable function F(A,B) as shown. Using Post algebra
notation we get the following representation (sum-of-products) F(A,B)= (1* Co(A)* Co(B))+
(1% Co(A)* C1(B))+ (1% Co(A)* Co(B))+ (1* C4(A)* Co(B))+ (1% Co(A)* Co(B))+ (C2(A)* C4(B)) This
representation uses 16 binary operations (11 MIN and 5 MAX) and 12 unary
operations.

If we use the product-of sums we get the following: F(A,B)= (1+ Jo(A)+ Jo(B))* (1+ Jo(A)+
J1EB;;* (1+Jo(A)+J2(B))* (1+J1(A)+Jo(B))* (J1(A)+ J1(B))* (J1(A)+ Jo(B))*(1+J2(A)+ Jo(B))*(Jo(A)+

Ji(B

This product-of-sums representation uses 20 binary operations (13 MAX and 7 MIN)
and 16 unary operations.

11.2.2 Design of 3S201:001:111 Using AOP Orthogonal theorem-|

For any function, Post algebra has no choices except to represent the function by
MIN, MAX and complementary functions. But this is different in AOP. Since AOP has
multiple operations, it does the following: it searches for the best STAS set of
prioritors and then uses its orthogonal theorems to represent the function. In ternary
multiplication design, AOP selected (T1,T6) and (T2,T4) as the best STAS systems
and we went on and used (T1,T6) for comparison reasons with Post algebra. But

35

note the difference in this example, here AOP selects one STAS system based on
the function to be represented.

Example 41: Design of 35201:001:111 Using AOP Orthogonal theorem-I

The MRV (most repeated value) in the function table (35201:001:111) of this function
is “1”, thus we select a prioritor whose supremum-digit is equal to one. The NMRV
(next most repeated value) in this table is ‘0’, thus we select a prioritor with an
infimum-digit equal to ‘0’. The prioritor with 1-supremum digit and O-infimum digit is
T4. Thus a=T4, a™ =1, a™ =0, and a*=T2. The best STAS system to represent this
function which will start-off with the lowest representation (not minimum) is (T4,T2).
By substituting in AOP orthogonal theorem-| we get:

F(A,B)=(00Am 110GBm 11O)G*(OGAm 11OaBm 210)0(00Am 210GBm 110)G(2GAm 210 GBm 210)

Since 0 is the infimum digit of a, then using the infimum-theorem, we modify the first
three terms and get
F(A B)= (Am 110 a Bm 110)a*(Am 110 a Bm 210)a*(Am 210 a Bm 110)a*(2a Am 21OGB|I 210)

Using AOP short-notations we get
F(A,B)= (A110 a B110)(X*(A110 a BZ1O)G*(A210 a B110)G*(20(A21OGBZ10)

This representation uses 5 T4s, 3 T3s, and 8 orthogonal operators. That is a total of
8 prioritors (8 binary operations) and 8 orthogonal operators. However, the Post
algebra representation for the same function by sum-of-products used 16 binary
operations and 12 complementary functions and by product-of-sums it used 20
binary operations and 16 unary operations. The difference between the
representations of AOP_and Post algebra is 8 binary operations plus 4 unary
operations for sum-of-products and 12 binary operation plus 8 unary
operations for product-of-sums_representation. This_shows the expressive
power of AOP over Post algebra.

11.2.3 Design of 35201:001:111 Using AOP Orthogonal theorem-I|

Example 42: Design of 3S5201:001:111 Using AOP Orthogonal theorem-II
We use the same STAS system obtained by orthogonal theorem-I, but we substitute
in orthogonal theorem-II to get the following.

F(A B)= (ADA 110a Bm 110)a*(ADA 110 o Bm 210)a*(ADA 210 a BDA 110)a*(Am 212 o Bm 212)
Using AOP short-notations
F(A,B)= (A”OG B“O)CX*(A”O a BZ1O)G*(A210 a B110)CX*(A212 a 8212)

This representation uses 4 T4s and 3 T2s. That is a total of 7 binary operations and 8
orthogonal operators.

11.2.4 Design of 3S201:001:111 Using AOP multi-operators set

Example 43: Design of 35201:001:111 Using AOP multi-operators set
Using the multi-operators set of AOP, we can design this example by 3 binary
operators and 2 unary operators. A solution to this example using three prioritors and

36

two unary operators is f(A,B)= (A" aB)A(A uB) " where a=T2, u=T1, A=T3, and
f=T5. This shows how AOP reduces circuit complexity of MVL circuits. Using
AOP theorems, we can go further and reduce the equation to f(A,B)= (AaB) " where
a=T1 and f=T5. Compare this design (1 binary operator and 1 unary operator) to
Post representations (16 binary operations & 12 unary operations)!

11.2.5 Design comparison

Table 5 shows a summary of all designs obtained by AOP and by Post algebra. For
the sum-of-products, AOP cuts the binary operators using its multi-operations by 85%
and the unary operators by 93.5%. For the products-of-sum, AOP cuts the binary
operators using its multi-operations by 93.75% and the unary operators by 81.25%.

Table 5: Design-Il Statistics and Reduction Percentages

3S201:001:111 Operation
Design Methods By Sum-of-Products By Products-of-Sums
By 20 16 16 12
No AOP Prioritors Binary Unary Binary Unary
1 | AOP Orthogonal-I 8 8 8 8
Reduction 60% 50% 50% 33.33%
2 | AOP Orthogonal-II 7 8 7 8
Reduction 65% 50% 56.62% 33.33%
3 | AOP multi-prioritors 3 1 1 1
Reduction 85% 93.75% 93.75% 81.25

12 Deriving Other Algebras From AOP

Boolean, Kleenean and Post algebra can be derived from AOP by (1) replacing the
a prioritor by the AND or MIN and the a* prioritor by the OR or MAX operator or vise
versa; (2) replacing any orthogonal or unary operator by NOT or MV-NOT; (3)
replacing any conservative unary operation by the NOT or MV-NOT operator; (4)
Replacing 'z' by '2' in statistical theorems for Boolean algebra. (5) Using MIN? =0
and MAX? =z-1, MIN” Y=z-1 and MAX""=0 for Post algebra; and (5) replacing
AmO(z-1) by Cr, and Am(z-1)0 by Jnn, where Jn(X)={0 if X=m, z-1 otherwise}
Cm(X)={z-1 if X=m, 0 otherwise}. See next section for derivation of Kleene’s laws.

12.1.1 Deriving the Kleene's Laws from the Absorption Theorem |l|

The Kleene's laws are: (1) (A«A)+(BLB)= (A*A) and (2) (A-A)J (BB)= (BB).
The '’ operator in this law represents the MIN operator and '[T represents the MAX
operator. The DnDel O prioritor in AOP corresponds to the MAX operator and the
UpDel prioritor A corresponds to the MIN operator.

Kleene's laws are: (1) (A*A)«(BB)= (A*A)and (2) (A-A)OI (BB)= (BB).
The '«' operator in this law represents the MIN operator and 'CT represents the MAX
operator. The DnDel prioritor “O0" in AOP corresponds to the MAX operator and the
UpDel prioritor “A” corresponds to the MIN operator.

' Visit my web site http://gtode.users3.50megs.com

37

Deriving the First Law

(AaA” ya(Ba*B")=(AaA" “¥)
(A’AD . #)°(B°*BD . #)=(A°AD . #)
(AsA" " #)e (BIB" " #)=(AsA" " ¥
(AsA” 2o (BOB" 4)=(AsA" %)

(As A")o(BOB)=(AA ")

Deriving the Second Law
(AGAD a#)G(BG*BD a#)=(AaAD a#)
(ACAT HO BB #*=(ADAT #
(ACA™ HO(BB™ #)=(ADAT #
(ACA™ 4O (B<B” #)=(ADA” 4)

(ADA)OI (Be B)=(AOA™)

Absorption theorem-Il|

Letting a=e

Since *=A, then «*=A*==

Since *=A, then

#=H=N-"T=AT =p

Since the bar " ' in Boolean, Post and
Kleenean algebras corresponds to A
operator in AOP. Q.E.D.

Absorption theorem-II|

Letting a=0

Since [0, then O*=0*=A=e
Since [FA, then D#=0#=

0-T "=p" A=A

Since the bar " ' in Boolean, Post

algebra and Kleenean algebras
corresponds to A operator in AOP.

Since [Jis a commutative operator we re-
order the terms on the left side

By letting A=B and B=A which does not
change the equation. This is Kleene's
second law. Q.E.D.

(B BT)IADA) =(ADA ™)

(A A~)(BOB) =(BOB")

13 AOP Versus Boolean and Post algebras
13.1AOP Versus Boolean Algebra

All results obtained for the binary system by AOP are identical to that of Boolean
algebra. There is no difference’® between these two algebras at the binary system
level. However, they are different for non-binary systems where Boolean algebra
does not work for non-binary systems but AOP does. Also, we can derive Boolean
algebra from AOP but we cannot derive AOP from Boolean algebra

There is a major difference between AOP and Boolean algebra in terms of concepts.
Boolean algebra relies on "logic" concept. This concept is limited to 'true' and 'false’.
It sees our world as a black and white world and it ignores the various colors of our
world. On the other hand, AOP uses the priority concept, which is more global and
more comprehensive concept than logic concept. The priority concept sees our world
as a flux of events, which can be processed based on a priority-scheme that can be
programmed in various ways to adjust to any phenomena in our world.

13.2A0P Versus Post algebra

There are similarities and differences between AOP and Post algebras. The
differences between AOP and Post algebra prove that AOP is not same as Post
algebra and because of these differences we cannot derive AOP from Post algebra.
On the other hand, we can derive Post algebra from AOP. The differences between

15 The general degeneracy theory expands the duality concept to include all the operators of the
binary system.

38

AOP and Post algebra exist on the following levels: operators, theorems, and
concepts.

13.2.1 Operators Differences

The design of a MVL digital circuit in AOP is achieved by composing prioritors and
unary operators into various configurations. AOP has a huge number of unary and
binary operators. For example, it has 24 prioritors in the quaternary system. Post
algebra is incapable of handling many of these operators. For example, the following
design of the ternary multiplication'® by AOP is composed from three prioritors
labeled a, (3, and p with two conservative unary operators labeled “f” and “y” and it is
written as A*B=(AaB")u(A”Y B B). There are various prioritors and conservative
operators that can compose this circuit. For example, a=T1, =T4, u=T2, f=T4 and
Y=T3. Post algebra cannot work with this equation because of the following facts: T1
and T4 do not satisfy Post algebra's axioms. Also, T1 & T2 do not satisfy Post
algebra's axioms. The conservative operators T4 and T3 are not the same as MV-
NOT, and thus DeMorgan's laws cannot be used. On the other hand, AOP simplifies
this circuit by reducing the number of conservative operators to one instead of two:
A*B=(AuB)a(AaB)"" where a=T1, u=T2, and f=T4. It is obvious that Post algebra

cannot handle this equation and get this reduction.

In summary, the operators domain of AOP is different from that of Post algebra and
the operators domain of Post algebra is always a subset of the operators domain of
AOP. So, Post algebra is a special case of AOP. This is like saying, the variables
domain of Post algebra is different from that of Boolean algebra and the variables
domain of Boolean algebra is always a subset of the variables domain of Post
algebra. So, Boolean algebra cannot work for the entire variable domain of Post
algebra. In a similar way, we say Post algebra cannot work for the entire operators
domain of AOP.

13.2.2 Theorems Differences

Due to the large domain of AOP operators, it is natural to have theorems for those
operators in AOP domain that do not exist in Post algebra Domain. Here are the
major theorems of AOP that do _not exist in Post algebra and cannot be derived
from Post algebra.

:ﬁ AOP Uniform Image-Scaling Theorem

& AOP Orthogonal Theorem-I|

_ﬁ AOP Local theorems: ex. Virtual theorems

& AOP Uniform Degeneracy theorems

#® AOP non-uniform Degeneracy & Image-Scaling Theorem'’

AOP Uniform Image-Scaling (UIS) Theorem is one of the most powerful theorems in
AOP and it replaces DeMorgan's Laws. The UIS theorem simply breaks the image of
binary operations under any conservative unary operator into three components as
(AaB) '=A""a " B where "f" is a conservative operator, 'a' is a prioritor and the

16 See design section
" AOP non-uniform Image-Scaling Theorem and AOP non-uniform Degeneracy Theorem are
completely beyond the scope of this paper.

39

image operation acting on 'a' is applied to its priority-assignment. This break up is
useful when this binary operation exist in equations that need to be simplified or
minimized. Post algebra does not have a similar theorem that operates for any image
operation done by a one-to-one function. If we use functional notation in
mathematics, which is not a good practice, we would write this theorem as
f(AaB)=f(A) f(a) f(B).

AOP Orthogonal Theorem-Il does not exist in Post algebra and cannot be derived
from Post algebra because its orthogonal operators do not satisfy Post algebra
conditions of "complementation functions". Also, this theorem has better
representations to MVL functions than the Post representations. This theorem also
offers z! representations for any function.

AOP Local theorems help us determine which radix is best and can serve us better
than other radices. Post algebra does not have local theorems for systems. Take the
virtual theorem: Aa(A™ " B B)=AaB, where a=T1, B=T2, and f=T4 in ternary system.
This theorem does no exist in Post algebra. Even though this theorem exists in
Boolean algebra, in the form A+(A * B)=A+B or A*(A +B)=A*B, Post algebra could
not inherit this theorem but AOP did.

AOP Uniform Degeneracy theorem is also one of the most powerful theorems in AOP
and it replaces the concepts of duality in Post algebra. Duality means that a MVL
equation can have two different forms with different operators and constants but with
the same variables. AOP uniform degeneracy theorem states that every MVL
equation can have Z! different forms with different operators and constants but with
the same variables. Unlike AOP, Post algebra follows the same steps of Boolean
algebra and sates that a MVL equation or function has two different forms.

13.2.3 Concepts Differences

Due to the limitations imposed by logic concept on our world, researchers tried to find
middle states between these two states ('true' and 'false') and developed the term
"Multiple-Valued Logic" meaning a logic with many logic-values. What are these
logical values in the world of logic? Are they 'true’, 'false’, 'half-true’, 'half-false’ ...
etc.? Based on multiple-logical values, MVL views our world as a black and white but
with different degrees. Post algebra picks up on this term and provides a
mathematical tool to work with multiple-valued logic systems based on its axioms.
The algebra does not have a natural concept, as the case in Boolean algebra or
AOP, to derive its operators and theorems from. On the other hand, AOP is an
algebra that has a solid natural concept from which AOP derived its operators and
theorems. By the priority concept, AOP was able to discover many facts about MVL
systems that Post algebra could not do. For example, AOP discovered

& that every z-radix system has a basic set of operators called prioritors whose
number depends on system radix and is given by z!.

& that any MVL equation can have z! distinct forms.

®& there exist z! representations for any MVL functions.

% there exist z! expansions for any MVL functions.

& the image-Scaling theorem to replace DeMorgan's Laws

x absorptions theorem-Ill to replace Kleene's laws

40

The priority concept is a universal and global concept that AOP did not found,
designed or create but used as a natural resource to analyze, build and design
digital systems. If God implemented this concept in all of his creations, then why not
use it in man-made machines?

14 Conclusion and Expectations

AORP is characterized by its insights and the simplicity of its concepts, notations,
and mathematical operations. It is a multi-valued multi-operational switching algebra
and it is a generalization to the formal generalizations of binary and multi-valued
switching algebras. We have shown that AOP in a z-radix system has z! binary
operations called prioritors, has z! conservative unary operators and has z*(z-1)
unary orthogonal operators. Further, we have shown: (1) the development of AOP
from the priority concept and principle; (2) the TAS systems of AOP; (3) the intrinsic
and extrinsic theorems AOP; (4) the advanced theorems of AOP: the image-scaling
theorem, uniform degeneracy theorem, orthogonal theorem |, orthogonal theorem II,
expansion theorem 1, expansion theorem II; (5) (6) the proofs of the basic and
advanced theorems of AOP; (4) the prioritors of the binary, ternary, and quaternary
systems; (5) that Boolean and Post algebras are special cases of AOP.

Furthermore, we have shown: (1) how the uniform degeneracy theory of AOP
extended the duality theory used by Boolean and Post algebras; (2) how a MVL
equation can be degenerated into z! equations; (3) how the uniform degeneracy
operation replaced the "dual" operation used by Boolean and Post algebras; (4) how
the orthogonal theorems | & Il of AOP extended the representations of MVL functions
from two representations (sum-of-products and product-of-sums) to z!
representations; (5) how the expansions theorems 1&ll of AOP extended the
expansion of MVL functions from two expansions to z! expansions; (6) how the
image-scaling theorem of AOP replaced DeMorgan's laws; (7) how the absorption

theorem-lll of AOP replaced Kleene's laws; (8) how Boolean, Post algebra and
Kleenean algebras are special cases of AOP; (9) how AOP reduces MVL circuits
complexity

Multiple-Operational Logic (MOL) is a new area that uses multiple-
operators from unary and binary operators to design digital circuits. It is aimed
at_introducing, into logical systems, a variety of new operators that will make
design more flexible than would be using just the MVL traditional operators.
AORP is just a starting point in this field. AOP opens a new wide area for research.
The large number of prioritors in various radii needs to be investigated more in terms
of their use in digital circuits design. If researchers get interested in this field, then
they can work toward the means that will develop the concepts of this field as they
did for the field of MVL.

41

15 Tables

Table 6: Conservative Unary Operators

Binary System Conservative Unary Operators

MIN=Q1=A, MAX=QO=0, MV-NOT=A=450123, A=450123, 0=4S3210

Unary List By S-code List By B's Code |Significant Name,
No| a a a- o* a# a | a- | o |a# | MSD|LSD Function
1|B1| 2S01 | 2S01 | 2S10 | 2S01 |B1 /B1|B2|B1, O 1 NOT, 1-complement
2 |B2| 2510 | 2S10 | 2S01 | 2S01 |B2|B2|(B1|B1| 1 0 | Identity, 0-Complement
AND=B1=A, OR=B2=0, NOT=A=2S01, A=2S01, 0=2S10
Ternary System Conservative Unary Operators

Unary List By S-code List By T's Code |Significant Name,
No| a a a- o* o# o | a- | o |a# | MSD |LSD Function
1|T1|3S012|3S012 |3S210(3S012 | T1 | T1|T6|T1| O 2 | MV-NOT, 2-complment
2 | T2 |3S021 | 3S102 | 3S120 | 3S201 | T2 | T3 [T4 |[T5| O 1 Successor/up
3 | T3|3S102 | 35021 | 3S201 (3S120 | T3 | T2 |T5 |T4| 1 2 .
4 | T4 |3S120 | 35120 | 3S021 | 3S201 | T4 | T4 | T2 |T5| 1 0 0-complement
5| T5|35201 | 35201 | 35102 | 3S120 | T5|T5 | T3 |T4| 2 1 1-complement
6 | T6|3S210 | 35210 | 35012 | 3S012 | T6 | T6 | T1 |T1| 2 0 Identity
MIN=T1=A, MAX=T6 =0, MV-NOT=A=3S012, A=3S012, 0=3S210

Quaternary System Conservative Unary Operators
Unary List By S-code List By Q's Code|Significant Name,
No| a a a- o* a# a | a- | o |a# | MSD|LSD Function
1 | Q1[4S0123|4S0123|4S3210|4S0123| Q1 | Q1 |QO | Q1 MV-NOT, 3-Complement
2 | Q2]4S0132| 451023 | 452310 (451032 | Q2 | Q7 | QI | Q8
3 | Q3480213 | 450213 | 453120 [4S0123 | Q3 | Q3 |QM | Q1
4 | Q4| 4S0231 | 4S1203 | 4S1320 | 452301 | Q4 | Q9 [QC [QH
5 | Q5(4S0312|4S2013|4S2130(4S1032| Q5 |QD |QG |Q8 .
6 | Q6/4S0321|4S2103|4S1230({4S2301| Q6 | QF | QA |QH Successor/Up
7 | Q714S1023|4S0132|4S3201(4S1032| Q7 | Q2 |QN [Q8
8 | Q8|4S1032|4S1032|4S2301(4S0123| Q8 | Q8 |QH |Q1
9 | Q9|4S1203|4S0231|4S3021(4S1032| Q9 | Q4 | QK |Q8 .
10| QA [4S1230(4S1230(4S0321|4S2301| QA | QA | Q6 |QH 0-Complement
11|QB [4S1302|452031|4S2031|4S0123| QB | QE | QE | Q1
12|QC|[4S1320(4S2130(4S0231|4S2301| QC | QG| Q4 |QH
13|QD[4S2013|4S0312(4S3102|4S2301| QD | Q5 | QL |QH
14| QE [4S2031|4S1302|4S1302|4S0123| QE | QB | QB | Q1 .
15| QF |4S52103/4S0321|453012|4S52301| QF | Q6 | QJ |QH Predecessor/Down
16|QG[4S2130/45S1320/4S0312|4S51032| QG | QC | Q5 | Q8 .
17|QH[4S2301|452301/4S1032|4S0123| QH |QH | Q8 | Q1 1-Complement
18| QI [4S2310/452310/4S0132|4S1032| QI | QI | Q2 | Q8 .
19|/ QJ [4S3012|4S3012|4S2103|4S2301| QJ | QJ | QF |QH 2-Complement
20| QK | 4S3021 | 4S3102 | 451203 | 451032 | QK | QL | Q9 | Q8
21| QL | 4S3102 | 4S3021 | 452013 | 4S2301 | QL |QK | QD |QH
22 |QM | 4S3120 | 4S3120 | 450213 | 450123 |QM |QM | Q3 | Q1
23| QN | 4S3201 | 4S3201 | 451023 | 451032 | QN |QN | Q7 | Q8 .
241Q0 | 4S3210 | 4S3210 | 4S0123|4S0123 | QO |QO | Q1 | Q1 Identity

42

Table 7: Orthogonal Operators in Binary, Ternary, and Quaternary Systems

Quaternary System Ternary Binary
1 | 4Q001 | 13 | 4Q101 | 25 | 4Q201 |37 |4Q301| 1 [3Q001|13|3Q201 (1| 2Q001
2 [4Q002 | 14 | 4Q102 | 26 | 4Q202 | 38 |4Q302 | 2 | 3Q002 |14 |2Q202 |2| 2Q010
3 [4Q003 | 15 | 4Q103 | 27 | 4Q203 |39 |4Q303 | 3 |3Q010|15|3Q210 (3| 2Q101
4 | 4Q010 | 16 | 4Q110 | 28 | 4Q210 (40 |4Q310| 4 [3Q012|16|3Q212 (4| 2Q110
5 [4Q012 | 17 | 4Q112 | 29 | 4Q212 |41 |4Q312| 5 | 3Q020 |17 |3Q220
6 [4Q013 | 18 | 4Q113 | 30 | 4Q213 (42 |4Q313| 6 |3Q021 |18|3Q221
7 [4Q020 | 19 | 4Q120 | 31 | 4Q220 |43 |4Q320| 7 | 3Q101
8 [4Q021 | 20 | 4Q121 | 32 | 4Q221 |44 |4Q321| 8 |3Q102
9 [4Q023 | 21 | 4Q123 | 33 | 4Q223 |45|4Q323| 9 [3Q110
10 | 4Q030 | 22 | 4Q130 | 34 | 4Q230 |46 |4Q330(10|3Q112
11 | 4Q031 | 23 | 4Q131 | 35 | 4Q231 |47 |4Q331(11|3Q120
12 | 4Q032 | 24 | 4Q132 | 36 | 4Q232 |48 |4Q332(12|3Q121

43

Table 8: Prioritors List In Binary, Ternary And Quaternary Digital Systems

Binary System Prioritors

Prioritor | List By The Priority-Assignment s-code | List By B's Code | Switches | STAS Function Table
No| a a a- a* a# | a |a-|a | o#|a®™ 0™ a | o List By s-Code
1|B1| 2501 | 2S01 | 2S10 | 2S01 |B1|(B1/B2|B1| 0 | 1 B1|B2 2S10:00 (AND)
2 |B2| 2S10 | 2S10 | 2S01 | 2S01 (B2|B2(B1/B1| 1 | 0 B2 |B1 2S11:10 (OR)
AND=B1=A, OR=B2=0, NOT=A=2S01, A=2S01, (0=2S10

Ternary System Prioritors
Prioritor | List By The Priority-Assignment s-code | List By T's Code |Switches | STAS Function Table
No| a a a- a* at | o a-|a* | a# a® o o | a* List By s-Code
1 |T1| 3S012 | 3S012 | 3S210 | 3S012 |T1|T1|T6|T1| O | 2 | T1|T6| 3S210:110:000 (MIN)
2 |T2| 35021 | 3S102 | 3S120 | 3S201 | T2 |T3|T4|T5| 0 | 1 |T2|T4| 3S220:210:000
3 | T3| 3S102 | 3S021 | 3S201 | 3S120 | T3 |T2|T5|T4| 1 | 2 |T3|T5| 3S210:111:010
4 | T4 | 35120 | 3S120 | 3S021 | 3S201 | T4 | T4 |(T2|T5| 1 | O T4|T2| 3S212:111:210
5 |T5| 3S201 | 35201 | 3S102 | 3S120 | T5|T5|T3|T4| 2 | 1 |T5|T3| 3S222:210:200
6 | T6| 35210 | 35210 | 3S012 | 3S012 |T6 | T6|T1|T1| 2 | O |T6|T1| 3S222:211:210 (MAX)

MIN=T1=A, MAX=T6 =0, MV-NOT=A=3S012, A=3S012, 0=3S210

Quaternary System Prioritors

Prioritor | List By The Priority-Assignment s-code | List By Q's Code | Switches | STAS Function Table

No | a a a- o o# a | a- | af | a# List By s-Code

1[{Q1/4S0123({4S0123|4S3210|4S0123|Q1| Q1 |Q0|Q1 4S3210:2210:1110:0000
2 1Q2|4S0132|4S1023|4S2310|4S1032 | Q2 | Q7 | QI |Q8 4S3310:3210:1110:0000
3 1Q3(4S0213|4S0213|4S3120|4S0123 | Q3 | Q3 ([QM| Q1 4S3210:2220:1210:0000
4 | Q41450231 |4S1203(4S1320|4S2301 | Q4| Q9 |QC |QH 74 Q4 4S3230:2220:3210:0000
5 | Q5|4S0312|4S2013|4S2130|4S1032 | Q5 |QD|QG| Q8 74 Q5 4S53330:3210:3110:0000
6 [Q6[4S0321|4S2103(4S1230|4S2301 | Q6 | QF |QA |QH 7 453330:3220:3210:0000
7 |Q7]451023|450132|4S32014S1032|Q7/Q2|QN|Q8| 1 | 3 Q7 453210:2210:1111:0010
8 | Q8[451032|451032|452301/4S0123/Q8 | Q8|QH|Q1| 1 | 2 Q8 453310:3210:1111:0010
9 |Q9[451203|450231|4S30214S1032/Q9/Q4|QK|Q8| 1 | 3 Q9 453210:2212:1111:0210
10| QA[4S1230|451230 450321 4S2301|QA|QA[Q6|QH| 1 | 0 QA 4S3213:2212:1111:3210
11|QB[4S1302 452031 |4S20314S0123|QB|QE|QE[Q1| 1 | 2 QB 453313:3210:1111:3010
12|QC| 451320452130 450231 4S2301/QC|QG|Q4|QH/ 1 | 0 QC 453313:3212:1111:3210
13|QD[452013450312 |4S31024S2301/QD|Q5|QL|QH| 2 | 3 QD 453210:2222:1210:0200
14| QE|4S2031 451302 |4S13024S0123|QE|QB|QB|Q1| 2 | 1 QE 453230:2222:3210:0200
15| QF |4S2103|4S0321 |4S30124S2301|QF |Q6|QJ[QH| 2 | 3 QF 453210:2222:1211:0210
16 |QG|4S2130|4S1320|4S0312|4S1032 |QG|QC| Q5| Q8 74 QG 4S3213:2222:1211:3210
17 |QH|4S2301|4S2301 |4S1032|4S0123 |QH|QH| Q8 | Q1 74 QH 4S53233:2222:3210:3200
18| QI |4S2310(4S2310|4S0132|4S1032| QI | QI | Q2 |Q8 74 Ql 4S3233:2222:3211:3210
19{QJ |4S3012|4S3012|4S2103|4S2301|QJ | QJ | QF |QH 74 QJ 4S3333:3210:3110:3000
20|QK [4S3021|4S3102|4S1203|4S1032 | QK |[QL | Q9 | Q8 4S3333:3220:3210:3000
21| QL |4S3102|4S3021|4S2013|4S2301 | QL |QK [QD|QH 4S3333:3210:3111:3010
22|QM|4S3120|4S3120|4S0213|(4S0123 | QM|(QM| Q3 | Q1 4S3333:3212:3111:3210
23|QN|[4S3201|4S3201|4S1023|(4S1032 | QN |(QN | Q7 |Q8 4S3333:3222:3210:3200
241Q0|4S3210|4S3210|4S0123(4S0123 Q0O (Q0O| Q1 |Q1 4S3333:3222:3211:3210

MIN=Q1=A, MAX=QO=0,

MV-NOT=A=4S0123, A=4S0123, 0=4S3210

44

Table 9: Number Of Prioritors In 2-31 Radices Systems

Radix|Prioritors Number/Radix Prioritors Number
2 2 17 355,687,428,096,000
3 6 18 6,402,373,705,728,000
4 24| 19 121,645,100,408,832,000
5 120 20 2,432,902,008,176,640,000
6 720 21 51,090,942,171,709,440,000
7 5,040 22 1,124,000,727,777,607,680,000
8 40,320/ 23 25,852,016,738,884,976,640,000
9 362,880 24 620,448,401,733,239,439,360,000
10 3,628,800 25 15,511,210,043,330,985,984,000,000
11 39,916,800, 26 403,291,461,126,605,635,584,000,000
12 479,001,600 27 10,888,869,450,418,352,160,768,000,000
13 6,227,020,800, 28 304,888,344,611,713,860,501,504,000,000
14 87,178,291,200, 29 8,841,761,993,739,701,954,543,616,000,000
15 1,307,674,368,000, 30 265,252,859,812,191,058,636,308,480,000,000
16 20,922,789,888,000, 31 8,222,838,654,177,922,817,725,562,880,000,000

Table 10: Binary TAS systems

TAS TASB1 TASB2
Base 2301 2510
ancestor (B2,Bl) (B2,B2)
1 (B1,B2) B1 | (B1,B1) B2
2 (B2,B1) B1 | (B2,B2) B2

Table 11: Ternary TAS Systems

TAS TAST1 | TAST2 | TAST3 | TAST4 | TAST5 | TAST6
Base 35012 35021 35102 35120 35201 35210
ancestor (T6,T1) @ (T6T2) (T6T3) @ (T6T4) | (T6T5 (T6T6)

1 (TL,T6) T1| (TLT5) T3 (TLTH T2 (TLT3)T5 (TLT2) T4 (TL,T1)T6
2 (T2 T4 T5| (T2T3) T2 (T2T6) T3 (T2T5 T1 (T2TL) T4 (T2T2)T6
3 (T3,T5) T4 | (T3,T6)T2 (T3,T2)T3 (T3, TL)T5 (T3,T4) T1 (T3T3)T6
4 (T4T2)T5 | (T4TL) T3 (T4T5) T2 (T4T6)T4 (T4AT3)TL1 (T4T4)T6
5 (T5,T3) T4 | (T5T4) T3 (T5T1) T2 (T5T2)T1 (T5T6)T5 (T5T5) T6
6 (T6,T1) T1| (T6,T2) T2 (T6T3) T3 (T6,T4) T4 (T6T5 T5 (T6,T6)T6

45

Table 12: Transferring The Function Table

Function Table {Term| Vectors Table Representations

#| u | v |f(u,v)| Type|Vector|Components Terms Of Terms Of

M X2 Xt | FXn) [v *M | Xy | X2 | Xt Orthogonal-I Orthogonal-Il
1010 0 v [X:=00|X1,=0 X;,=0 (OGUD 8012 4,0 A012) a* (uD 8010 4,0 A010)a*
2 0 1 1 x [X=01 | X=0| X51=1 trivial trivial
302 2 M [X5=02| X5,=0 | X5,=2 (UEI 8012 5,0 A212)a* (UD 8012 5,0 A212)a*
41,0 1 x [X4=10 Xg2=1|X44=0 trivial trivial
5111 1 x [Xs=11 | Xso=1 | X5¢1=1 trivial trivial

6 1 2 1 x [Xe=12 | Xep=1| Xg1=2 trivial trivial
71270 2 M | X,=20 | X7,=2|X71=0 (uD 8212 4\/0 A012)a* (uD 8272 4y O A012)a*
8 2|1 1 x| Xg=21 Xg2=2 | Xg1=1 trivial trivial

9l 2 2 2 M [Xe=22| Xg=2 | Xg1=2 (UD 2212 5\ 0 A212) (uD 8212° 5\, O A212)
Orthogonal-I Rep: f(u,v)= (Oaum 2 P 012)a*(um 012 /B 212)&*(ul 212 o A 012)a*(um 212 /B 212)
Orthogonal-Il Rep: f(u,v)= (um 010" o /B 010)a*(um 012 5B 212)0*(u? 22 5B 012)a*(um 217 /B 212)

xTrivial term, v non-trivial term, M NMRV-term, NMRV=2, MRV=1, a=T3 , STAS=(T5,Ts)

Table 13: Uniform Image Scaling Of a= Ql Underf 4S3012

Nol A | B AEI f BEI AaB AaOTTTB (Aa B) AEI f (XOfff BI:I f
1/01]0 2 2 0 0 2 2
2101 2 1 0 1 2 2
3/01(2 2 0 0 2 2 2
4 |0 | 3 2 3 0 0 2 2
5110 1 2 0 1 2 2
6 (1|1 1 1 1 1 1 1
7112 1 0 1 2 1 1
8 1|3 1 3 1 1 1 1
92 1|0 0 2 0 2 2 2
102 | 1 0 1 1 2 1 1
112 | 2 0 0 2 2 0 0
122 | 3 0 3 2 2 0 0
13/ 3 |0 3 2 0 0 2 2
14| 3 | 1 3 1 1 1 1 1
15 3 | 2 3 0 2 2 0 0
16| 3 | 3 3 3 3 3 3 3

46

Table 14: The Uniform Degeneracy Of Prioritors

The Uniform Degeneracy Of Prioritors In Binary, Ternary, and Quaternary

Systems
Quaternary System Ternary System | Binary System
Q's | 123456 | 789ABC| DEFGHI | JKLMNO
444444 | A44444 444444 | 444444 | T's [12]34]56
0 |SSSSSS SSSSSS|SSSSSS| SSSSSS| O (33(33/33 | Bs | 1 | 2
Select | 000000 | 111111 [222222 | 333333 |Select|SS|SS|SS| O | 2 | 2
"f* 1112233002233 001133 | 001122 | "f* [00(11[22 |Select| S | S
O |231312[230302 130301 120201 | O (12/02[01] "f* | O | 1
323121 323020313010 | 212010 21/20/10| o | 1 | O
a The Uniform Degeneracy a°" a a o a a o
Q's 123456 | 789ABC|DEFGH | JKLMNO | T's [12(34/56 | B's | 1 | 2
Q1 |O MCGA|NHK6E4 [LBJ582 | FOD371 | T1 [64/52(31| B1 | 2 | 1
Q2 |NHLBF9 | O J5D3 |MCK671 | GAE482 | T2 [(53/61(42| B2 | 1 | 2
Q3 |MGOAI C|KEN4H6 |J8L2B5 | D7F193 | T3 [46(25/13
Q4 |LFNOHB|JDO3I 5 K7MLC6 | EBQRA4 | T4 (35|16 24
Q5 |KEJ8D7 |MGL2F1 | CAN493 | I CH6B5 | T5 (214365
Q6 |JDK7E8 |LFMLG2 [NOCBA4 | HBI5C6 | T6 [12(34|56
Q7 || OCMAG| HN6K4E | BL5J28 | 9F3D17 G e e T—
Q8 |HNBLOF || C6J3D| CMBK17 | AZAE28 R I 7 hoe b i
Q9 |GVAOCI |EK4N6H|8J2L5B| 7D1F39 wp | 11hgy | oo this bl
QA |FLONBH DJ3C6I | 7K1IMBC| BE2GAA S (atas e " 38
QB |EK8J7D| GVRL1F | AO4AN39 | Cl 6H5B sohipp | columnsas
QC |DI7K8E FL1IM2G| 9N3O4A | BH51 6C 450213 and
QD | CAl GOM| 64HENK |52B8LJ | 3197FD @ 24 1 locased
QE |B9HFNL 531 DQJ | 61C7MK | 42A8GE G R e
QF |ACG MO|46EHKN|258BJL | 1379DF Q1 |QTMCGA is"N"and
QG |9BFHLN| 35Dl JO|167CKM| 248AEG Q: |NHLBF | iem prefx
QH |87EDKJ |21GFM. | 43A90N| 65CBI H Qs |MGPAIC | ihe uniform
QI | 78DEJK|12FGLM 349ANO| 56BCHI or—& igma--ﬂgf-;:zmﬁ
QJ | 645231 CAB897 || GHEFD| OMNKLJ Qs |KEJBD7 | is writen as:
QK |536142 |BOC7A8 | HFI DGE | NLQJMK Q¢ [IDK7ES | g,
QL |462513AC8B79 |G EHDF | MOKNJL o
QM | 351624 | 9B7C8A | FHDI EG| LNJOKM oo =P eason3
ON | 214365 87A9CB | EDGFI H| KIMLON = =
QO | 123456 | 789ABC | DEFGHI | JKLMNO

47

Table 15: Degenerate Equations Of Distribution Theorem

Degenerate Equations Of Example 1

Uniform Degeneracy Of
Ada; (B aoC)z(A (X]_B) ao(A (X]_C)

Uniform Degeneracy Of
Aa; (B aoC):(A alB) (Xo(A alC)

| “offf” Under offf Operator # | “offf” Under offf Operator

1 [4S0123 |A ao (B a,C)=(A do B) a1(A 0C) 13 | 482013 | A oy (B 0pC)=(A a;B) 0p(A 0,C)
2 1450132 |A a; (B a, C)=(A a;B) a, (A a,C) 14 | 482031 | A op (B azC)=(A 0B) 0x(A ag C)
3 [4S0213 | A ay (B 03 C)=(A ayB) 0;3(A ayC) 15 | 482103 | A a; (B arC)=(A a;B) ax(A a; C)
4 1450231 |A ac (B 0,C)=(A aCg) 04(A acC) 16 | 4582130 | A a5 (B agC)=(A asB) ag(A as C)
5 1450312 | A ag (B a5 C)=(A ag B) as(A agC) 17 | 482301 | A o5 (B ayC)=(A asB) ou(A o5 C)
6 |4S0321 |A a, (B ag C)=(A a4 B) a4(A a4 C) 18 | 452310 | A a, (B 0,C)=(A a,B) ay(A a, C)

7 1481023 |[Aay (B a; C)=(AayB)os;(AayC) | 19 | 453012 | A ar (B a;C)=(A azB) ay(A oy C)
8 1451032 | A oy (B 05 C)=(A oy B) 0g(A ay C) | 20 | 4S3021 | A ay (B 0xC)=(A 0sB) k(A ay C)
9 [4S1203 | A ax (B 0y C)=(A ax B) ag(A 0x C) | 21 | 4S3102 | A ap (B a.C)=(A opB) ai(A ap C)
10|4S1230 | A 0 (B a4 C)=(A 0 B) ai5(A 0 C) 22 | 453120 | A a5 (B oyC)=(A a3B) ay(A a; C)
11]4S1302 | A o (B ag C)=(A ag B) ag(Aar C) | 23 | 4S3201 | A a; (B onC)=(A a;B) an(A a; C)
12481320 | A o (B o C)=(A a4 B) ac(A a, C) 24 | 483210 |A a, (B 0oC)=(A a;B) 0o(A a; C)

48

16 Figures

Relation of Unary Function Table To Unary 5-Code

Function The Tunction table s listed in the
Table s-code from right-to-lefi
X 5
0 3
I 2
5 0= System Radix
; T C-code suffix
: B 1 1 2 1 . -
—— . — ~ . Activating Digit
System Radi 4310234 S-code Inactive State Digit
'S'-Suffix Active State Digit

Figure 5. Unary S-Code Format Figure 6: Orthogonal Code Format
Eelation hetween functon table and AQP z-code

Ho[A [B [&aE

1] 1]]

2 1] 1 1

3 1] 2 2

4] 3 I}

5 1 1] 1

f 1 1 1

i) 1 2 2

i 1 3 1

a 2 1] 3

1| 2 1 3

11 | 2 2 2

12 | 2 3 3

13| 3 1] 1]

14| 3 1 1

15| 3 2 2

Ia | 3 3 3

&) Fuvction table -

Sﬂmmﬁﬂﬂﬁ _\" TYYY FTXYY FTXYY FHFY
B 5-Code of S 1
The function tahle iz listed from right-to-lefi

Figure 8: Map Of All Possible Pairs of
Figure 7: Prioritors S-Code Format Ternary Prioritors

49

17 BIBLIOGRAPHY

1.S.L. Hurst, “Multiple-Valued Logic-Its Status and its Future, ” IEEE trans.
computers, Vol. C-33, No 12, pp.1160-1179, DEC 1984.

2.J. T. Butler, “Multiple-Valued Logic in VLSI Design, ” IEEE Computer Society
Press Technology Series, 1991.

3.C.M. Allen, D.D. Givone “The Allen-Givone Implementation Oriented Algebra,
” in Computer Science and Multiple-Valued Logic: Theory and Applications, D.C.
Rine, second edition, D.C. Rine, ed., The Elsevier North-Holland, New York,
N.Y., 1984. pp. 268-288.

4.G. Epstein, “The Lattice Theory Of Post algebras, ” in Computer Science and
Multiple-Valued Logic: Theory and Applications, D.C. Rine, second edition, D.C.
Rine, ed., The Elsevier North-Holland, New York, N.Y., 1984. pp. 23-40.

5.1.G. Rosenberg, “Completeness Properties Of Multiple-Valued Logic
Algebras, ” in Computer Science and Multiple-Valued Logic: Theory and
Applications, D.C. Rine, second edition, D.C. Rine, ed., The Elsevier North-
Holland, New York, NY, 1984. pp. 150-174.

6. G. Abraham, “Multiple-Valued Negative Resistance Integrated Circuits, ” in
Computer Science and Multiple-Valued Logic: Theory and Applications, D.C.
Rine, second edition, D.C. Rine, ed., The Elsevier North-Holland, New York,
N.Y., 1984. pp. 394-446.

7.G. Epstein, G. Frieder and D.C. Rine, “The Development Of Multiple-Valued
Logic As Related To Computer Science, ” in Computer Science and Multiple-
Valued Logic: Theory and Applications, D.C. Rine, second edition, D.C. Rine,
ed., The Elsevier North-Holland, New York, N.Y., 1984. pp. 87-107.

8.J.C. Muzio, T.C. Wesselkamper, “Multiple-Valued Switching Theory,” Adam
Hilger, Boston, Mass., 1986.

9.D.C. Rine, “Computer Science And Multiple-Valued Logic: Theory And
Applications, ” second edition, D.C. Rine, ed., The Elsevier North-Holland, New
York, N.Y., 1984.

10.K.C. Smith, “The Prospects Of Multiple-Valued Logic: A Technology And
Application View, ” IEEE Transaction on Computers, pp 619-632, DEC 1981.

11. G. Epstein, A. Horn, “Chain Based Lattices, ” in Computer Science and
Multiple-Valued Logic: Theory and Applications, D.C. Rine, second edition, D.C.
Rine, ed., The Elsevier North-Holland, New York, N.Y., 1984. pp. 58-76.

12.Y. Hata, K. Nakashima and K. Yamato, “Some Fundamental Properties Of

Multiple-Valued Kleenean Functions And Determination Of Their Logic
Formulas, ” IEEE Trans. Computers.; Vol 42, No 8, pp 950-961, AUG 1993.

50

13. George Epstein, Alfred Horn, "P-Algebras, An Abstraction From Post
algebras, " in Computer Science and Multiple-Valued Logic: Theory and
Applications, D.C. Rine, second edition, D.C. Rine, ed., The Elsevier North-
Holland, New York, N.Y., 1984. pp. 108-120.

14. Grimaldi, Ralph, "Discrete And Combinatorial Mathematics: An Applied
Introduction, " 2™ ed., Addison-Wesley Publishing Company, 1989.

15. K. Smith, "Multiple-Valued Logic: Tutorial And Appreciation, " IEEE
Transaction on Computers, pp 17-27, April 1988.

16. Stephen Su, Peter T., “Computer Simplification Of Multi-Valued Switching
Functions,” in Computer Science and Multiple-Valued Logic: Theory and
Applications, D.C. Rine, second edition, D.C. Rine, ed., The Elsevier North-
Holland, New York, N.Y., 1984. pp. 195-226.

17. William R. Smith, “Minimization Of Multi-Valued Functions, ” in Computer
Science and Multiple-Valued Logic: Theory and Applications, D.C. Rine, second
edition, D.C. Rine, ed., The Elsevier North-Holland, New York, N.Y., 1984. pp.
227-267.

18.Josep M., Ventura V., "Abstract Characterization Of Four-Valued Logic,"
IEEE Int. Symp. Multiple-Valued logic, 1988, p.389-396.

19. G. Epstein and R.R Loka, "Almost Orthogonal Functions, " IEEE Int. Symp.
Multiple-Valued logic, 1988, p.405-411.

20. lov G. Rosenberg, Dan A. Simovici, "Algebraic Aspects Of Multiple-Valued
Logic, " IEEE Int. Symp. Multiple-Valued logic, 1988, p.266-275.

21.Yoshifumi Tsuchiya, "Four-Valued Logic Using Two Lines And Its
Applications To Model Logic," IEEE Int. Symp. Multiple-Valued logic, 1988,
p.398-404.

22.P. Garcia, E. Esteva, "Representation Theorem Of Ockham Algebras, " IEEE
Int. Symp. Multiple-Valued logic, 1989, p.14-19.

23.T. Traczyk, “Post algebras Through PO and P1 lattices, ” in Computer
Science and Multiple-Valued Logic: Theory and Applications, D.C. Rine, second
edition, D.C. Rine, ed., The Elsevier North-Holland, New York, N.Y., 1984. pp.
121-142.

24.T. Sasao, “Multiple-Valued Decomposition of Generalized Boolean

Functions and the Complexity of Programmable Logic Arrays,” IEEE Trans.
Computers, Sept. 1981, pp. 635-643.

51

absorption theorem, 17
Absorption Theorem-|, 19
Absorption Theorem-II, 19
Absorption Theorem-lll, 19
Association Theorem, 18
binary image operation, 25
Boolean algebra, 37
child-equations, 31
Claude Shannon, 2
comate, 15
Commutation Theorem, 18
Comparison, 18
conservative operators, 2, 3, 4, 8, 9,
10, 12
costar operation, 11, 14
Costar-Cyclic Theorem, 19
Costar-Relative Priority, 18
counting operator, 21
Del-Del Properties, 18
design example, 32
distinct priority, 5, 6, 7
Distribution Theorem, 19
Down-Del operator, 9
duality, 28, 30
Equations Uniform Degeneracy
Theorem, 31
Expansion Theorem-I, 24
Expansion Theorem-Il, 24
extrinsic TAS system, 15
Extrinsic theorems, 17
Generalized Mean, 18
global TAS, 16
Global Theorems, 17

How AOP represents a MVL function,

23
Idempotence Theorem, 18
inferiority operator, 14
Inferiority Substitution, 19
Inferiority Theorem, 18
infimum operation, 14
infimum signal, 13
Infimum-Digit Theorem, 18
interconnection problem, 2
intrinsic TAS system, 15
Intrinsic theorems, 17
inverse operator, 10
ITAS, 15
Kleene's laws, 37
local TAS, 16
Local Theorems, 17

logical-values, 6, 7, 13

logic-set, 6, 7, 8, 9, 11, 13, 14, 23, 24
lowest start-off representation, 23
mate, 15

mathematical system, 6

Mean, 18

most repeated value, 21

MRV, 21

Multiple-Operational Logic, 2, 41
Multiple-valued Logic, 2

next most repeated value, 21
NMRYV, 21

number of prioritors, 13

orthogonal operators, 2, 3, 4, 8, 10, 21,

22,24, 25, 34, 36
orthogonal theorem-I, 21
Orthogonal Theorem-I, 20
orthogonal theorem-II, 22
Orthogonal Theorem-II, 20
parent-equation, 31
pinout problem, 2
Post representation, 32
priority assignment, 5, 7
priority concept, 1, 3, 5,6, 7
priority convention, 5, 7
priority-assignment code, 7
Priority-assignment image operation,

25
Priority-Star Theorem, 18
processing systems, 5
Quasi Static Theorem, 19
Sequential Inverse, 18
Sequential-Star, 18
similarities and differences, 38
star operation, 11
Star-Cyclic Theorem, 19
Star-Image, 18
Star-Relative Priority, 18
Star-Theorem, 18
start-off representation, 21
STAS, 15
STAS extrinsic theorems, 19
states-set, 6
static theorem, 17
Static Theorem, 19
Substitution Theorem, 19
superiority operator, 14
Superiority Substitution, 19
Superiority Theorem, 18
supremum operation, 14

supremum signal, 13
Supremum-Digit Theorem, 18
TAS, 15

TAS s-code, 16

TAS systems, 15

TAS systems in binary system, 16
ternary multiplication operation, 32
ternary system TASes, 16

trivial term, 21

trivial values, 21

unary image operator, 8

uniform degeneracy
, 28

uniform degeneracy of functions, 29

uniform degeneracy of prioritors, 28

Uniform Image-Scaling, 19

uniform image-scaling (UIS) theorem,
26

Up-Del operator, 9

virtual term, 18

virtual theorem, 17

Virtual Theorem-I, 20

Virtual Theorem-Il, 20

